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Abstract: as a fundamental study for our research, a 2D incompressible hyperelastic FEM 
program which employ the mixed FEM formulation is first developed and its performance is 
examined through several numerical experiments. Then, based on this program, a 2D coupling 
analysis program of the hyperelastic solid and static liquid is further developed and two 
numerical experiments including the trial analysis of the buckling operation on an eyeball are 
performed to demonstrate its effectiveness. 
 
 
1.INTRODUCTION 
   
  The objective of our research is to use the FE numerical Simulation method to simulate the 
retina detachment operation on an eyeball, which is at present mainly based on the 
experiences of the surgeon in clinic. The main purpose is to predict the optimum conditions 
for the clinical operation. However, The eyeball is a complex three-dimensional structure 
consisting of both the soft solid tissues and the liquid tissues. Thus, The problem is 
characterized by the three-dimensional solid-liquid coupling analysis. Therefore, it is 
necessary to develop a numerical simulation program based on the effective finite element 
formulation that can reliably describe the mechanical behavior of both the solid tissues and 
the liquid tissues, and in particular, can succeed in performing the solid-liquid coupling 
analysis. 
  The biomechanical response of many soft tissues of the living human and animals 
including a few tissues of the eyeball has been investigated by the mechanical experiments 
[1-3]. The results showed that most of them exhibits the nonlinear-elastic mechanical behavior, 
such as the incompressible hyper-elasticity. On the other hand, The retina detachment 
operation on an eyeball is a quasi-static process in clinic, thus it is natural to idealize the 
liquids enclosing in an eyeball as the static liquid in FEM simulation. In this paper, 
corresponding to the analysis of the nonlinear elastic response of the soft tissues, a 2D 
incompressible hyperelastic FEM program employed the mixed FEM formulation is first 
developed and several numerical experiments are performed to test this program and discuss 
the performances of the introduced mixed element types. Then, to arrive at the main purpose 
of this study, a 2D solid-liquid coupling analysis program in which the liquid is treated as the 
static liquid is further developed based on this program. Two numerical experiments including 
the trial analysis of the buckling operation on an eyeball are finally presented to show its 
effectiveness.  
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  This work is a fundamental study for our research. 
  
2.THE DEVELOPMENT OF 2D INCOMPRESSIBLE HYPERELASTIC PROGRAM  
 
  In this section, corresponding to the analysis of the nonlinear elastic response of the soft 
tissues, a 2D incompressible hyperelastic FEM program that employ the mixed FEM 
formulation, in which not only the displacement but also the pressure is used as unknown 
variables, is first developed. Further, several numerical experiments are performed to test this 
program. The results used different element types are presented and compared in each case. 

 
2.1 The mixed FEM formulation 
 
  The incompressible hyperelastic material is characterized by the stored strain energy 
function and incompressibility constraint condition, as expressed in the following forms 
respectively: 
   
Strain energy function: 
 
       ),( 21 IIWW =                                                      (1) 
 
Incompressibility constraint condition: 
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where J is the determinant of the jacobian matrix and  ,  are the three 
invariants of the right Cauchy-Green deformation tensor defined by:  
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whereε  is the Green-Lagrange strain calculated by the displacement u as follows: 
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  However, the use of above invariants can cause the lack of the analysis accuracy. To avoid 
this problem, the following reduced invariants are used conventionally.   
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  Thus, the strain energy function becomes: 
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  In our program, the Lagrange multiplier method based on the total lagrange formulation, in 
which the initial undeformed state is chosen as the reference configuration, is adopted. In this 
method, the incompressibility constraint is enforced by introducing the lagrange multiplier 
into the potential energy functional and Its total potential energy functional gives the 
following form: 
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where 0V  is the volume of body in the reference configuration, λ is the Lagrange mutiplier 
equivalent to the hydrostatic pressure, and )(ug is the potential energy of the external forces. 
  Invoking the stationarity of (7), we can obtain its variational equation:   
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thus, the approximation of the analysis can be found as the stationary points.  
  Unlike the displacement-based finite element formulation, In mixed finite element 
formulation, both the displacement and the pressure are used as the unknown variables. The 
displacement and pressure within an element are interpolated as follows, respectively: 
 
        RRNiNi uu λϕλφ ==                                           (9) 
 
where Nφ  is the displacement interpolation function and Rϕ is the pressure (Lagrange 
multiplier)interpolation function. While N is the number of displacement nodes and R is the 
number of pressure nodes within an element. 
  To achieve the finite element discretization, substituting (9) into (8), the following equation 
for one element being considered can be obtained:  
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where  is the equivalent nodal force corresponding to theNnr )(ug  in (7). 
  However, equation (10) is highly nonlinear in the unknown node displacements and 
pressures so that it is not easy to be solved. To solve this equation we adopted the 
Newton-Raphson iteration scheme, which is most frequently used in nonlinear FEM analysis. 
The key for this iterative solution procedure is the linearization of above nonlinear equation 
achieved by Taylor series expansion.  
  Assume that in the iterative solution, the solution at the )( 1i − th iteration step have been 
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evaluated, then a Taylor series expansion gives the incremental stiffness equation for an 
element at the i th iteration step in the form: 
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further, by assembling the element stiffness equations, the global incremental stiffness 
equation can be easily obtained:   
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thus, in each iteration step, the increments and can be calculated in (12) and the 
displacements and pressures at the displacement node points and pressure node points are 
updated according to: 

iU∆ iλ∆
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  To achieve the correct values of U and λ , the iteration is continued until the increments 
become sufficiently small. 
 
2.2 Some numerical experiments 
 
  In this program, the three types of two-dimensional mixed element are introduced i.e. the 
4/1, 8/1 and 9/3 elements. Here, the 9/3 element, for example, means that the nine 
displacement nodes and three pressure nodes are used to interpolate the displacement and 
pressure within an element, respectively. On the other hand, for corresponding to the various 
practical analysis problems, the three types of boundary condition prescribed by the 
displacement, force and pressure are made applicable.      
  In this section, we present some simple but basic numerical examples. In the all cases, all 
the three types of element are used and the full Gauss numerical integration scheme is 
employed to evaluate the element stiffness matrix and force vector. The goals of the analyses 
are to examine the effectiveness of the program and to test the performances of the element 
types. 
  In Fig.1, we summarily give the models used in analyses. For the all cases, the finite 
element meshes for the 4/1 element is so obtained by subdividing one mesh for 8/1 or 9/1 
element into four meshes, that the total displacement degrees of freedom are almost equal for 
the three types of element. In Fig.1, we only show the meshes for 4/1 element. Moreover, the 
Mooney-Rivlin material, which the stored energy function is expressed as 

)()( 3Ic3IcW 2211 −+−= , with material constants: 51c1 .= , 50c 2 .=  is used in each 
case. 
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    Calculation times (sec.)        Iteration steps  
   4/1       8/1   9/3   4/1         8/1    9/3 

Model 1    30    54   72    94   123    113 
Model 2   144   246  312   319   429    371 
Model 3    42    59   66   60    72      61 
Model 4   144   214  246   110   121    116 
 
  The analysis results of the deformed shapes and Mises stresses are summarized in Fig. 2. 
We can see that in the all cases, the reasonable and satisfactory results are obtained for all the 
element types 4/1, 8/1 and 9/1. Further, It is observed that the results from the three element 
types are in good agreement in each case, except that the maximum Mises stresses are slightly 
different. The calculation times and iteration steps for the three element types in each case are 
given in Table 1. By comparing with other two element types in each case, it is obvious that 
eider the times or the iteration steps cost for the calculations employed the 4/1 element are 
most small. In particular, the calculation times for the 9/1 element are over two times as much 
as the 4/1 element.  From the above analysis results, we can conclude that the program 
developed here is effective and, that the 4/1 element have the best performance among the 
three element types, from the points of view of both the calculation efficiency and the 
convergence of the Newton-Raphson iteration solution.  
 
3. THE DEVELOPMENT OF SOLID-LIQUID COUPLING ANALYSIS PROGRAM 
 
  In this section, to arrive at the main purpose in this study, a 2D solid-liquid coupling 
analysis program is further developed by introducing the effect of the liquid into the program 
developed above. Since the liquids enclosed in the eyeball can be considered as the static one 
for the reason mentioned in introduction, only its hydrostatic pressure caused by the volume 
change during deformation is taken into account in our formulation. 
 

   

 

Fig. 3 Circular vessel filled with liquid 
    under a load applied to its top 
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F 

  Let us consider a circular vessel filled with liquid as shown in Fig.3 which is subjected to a 
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force load applied to its top. It is imaginable that the pressure will occurs in the liquid as the 
vessel is deformed by the applied load and, it will acts on the inside surface of the vessel. It is 
assumed that the pressure is uniform through out the liquid, because it will be treated as the 
static liquid in our formulation. To achieve such a solid-liquid coupling analysis, thus, the 
problem will be how to introduce the liquid pressure into the solid part, the wall of the vessel, 
as the pressure boundary condition. 
 
3.1 Finite element formulation 
 
  For convenience, here, we assume that the wall of vessel is divided into the 4/1 elements 
for analysis. Now, let us take out a segment of the inside surface of vessel as shown in Fig. 4, 
which is one edge of the any 4/1 element lay on the wall. Then, the nodal forces equivalent to 
the liquid pressure acting on it can be simply calculated by equally assigning the total force to 
each node: 
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where, n  is the inward normal to segment, denote the node displacements of the 
segment  and  denote the displacements of the all nodes on the inside surface of vessel. 
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where, K is the liquid buck modulus and V 0 is the liquid initial volume. 
  The liquid volume during deformation can be calculated by taking the summation of the 
volumes shown in Fig. 5 which are obtained from each segment on the inside surface:   
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  Then, the volume change, the pressure change and the pressure can be written as follows, 
respectively:  
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where, P0  is the initial pressure of liquid. 
  Thus, Substituting from (20) into (14), we can obtain the equivalent forces expressed as the 
displacements of the all nodes on the inside surface: 
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Further, Substituting (21) into the right-hand side of the first equation in (10), paying attention 
to the node correspondence, we can obtain the modified one for equation (10): 
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  Using the same procedure as (12), finally, we can arrive at the global incremental stiffness 
equation for the solid-liquid coupling analysis:  
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where,  and  occurred newly in (23) comes form the liquid.  1i
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  Thus, solving this equation in the same way as (12), we can obtain the solution for the 
coupling analysis problem that we expected.   
3.2 Some numerical experiments 
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  To examine the effectiveness of the formulation for solid-liquid coupling analysis presented 
above, two numerical experiments are carried out. For these analyses, the 4/1 element is 
employed because it have been demonstrate in preceding section that this element type is best 
one among the three element types introduced into our program. 
 
3.2.1 analysis of the quadrilateral vessel filled with liquid under the pressures applied to 

both its top and its bottom 
 
  A quadrilateral vessel filled with liquid is subjected to the uniform pressures applied to both 
its top and its bottom. In order to examine easily the reasonableness of the analysis result, the 
analysis of a hollow quadrilateral vessel subjected to the same pressures is performed 
simultaneously. The analysis models are shown in Fig. 6. Here, from the geometrical 
symmetry, only a quarters of the models with 160 elements are used for analyses. Moreover, 
the Moony-Rivlin material descriptions are used to model the walls of vessels, with material 
constants  and, the buck modulus of the liquid is assumed to be 
2083.3MPa, which is equal to the water. 

50C51C 21 .,. ==

 
P P 

(a) Vessel filled with liquid (b) Hollow vessel 

Fig. 6 Analysis models for quadrilateral vessel subjected to pressures 
     applied to both its top and bottom. 

160 4/1elements 

 
  The analysis results of the deformed shapes and Mises stresses obtained in the two cases 
are given in Fig.7. It is seen that the results are remarkably different. In the case (a), the vessel 
underwent much larger deformation, stress and decrease in the thickness of the wall, 
comparing with case (b), because the volume of the liquid enclosed in vessel was almost 
unchanged. While the pressure needed to achieve such a deformation for the case (b) are 20 
times as smaller as for the case (a). Obviously, the results obtained in the analysis of case (a) 
are desirable and satisfactory. Hence it can be concluded that the formulation for solid-liquid 
coupling analysis presented above is effective. 
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(b) Hollow vessel (a) Vessel filled with liquid 

Fig. 7 Analysis results of the deformation shapes and Mises stresses 
     using the models shown in Fig. 6. 

   P = 0.5 MPa P = 0.025 MPa 

   
 
3.3.2 Analysis of the buckling operation on an eyeball  
 
  As have been mentioned in introduction, the purpose of our research is to simulate the 
retina detachment operation on an eyeball in order to predict the optimum conditions for 
clinical operation. Here, the analysis of the buckling operation on an eyeball is tried, since it 
is most frequently performed in clinical treatment for eyeball retina detachment. Although 
actually the eyeball have the complex 3D structure so that the 3D analysis is needed, it is 
expected that qualitative somewhat useful for the operation will be given by the 2D analysis. 
In this analysis, we only tried to qualitatively investigate the influence of the initial inner 
pressure on the shape of the eyeball buckled up, because the effect of the inner pressure on 
such operation have been recognized from the clinical operation.   
  The finite element division and tissue division used for analysis are given in Fig. 8. From 
the geometric symmetry, only a quarter of the model with 115 elements are used for analysis. 
The Neo-Hooke material model, which the stored energy function is expressed as 

)( 3IcW 11 −= , is used for the all soft tissues, and the material constants are given in Table 
1, which are obtained by transforming the Young s moduli used in the reference [5]. The buck 
modulus: 2083.3MPa is used for the liquids enclosed in two closed domains inside the eyeball. 
Further, the prescribed displacement is applied to the eyeball to simulate the buckling process 
as shown in Fig. 8. 
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Table 1 Material constants of tissues 
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. 8 Analysis model for buckling operation on an eyeball 

ris 3-sclera 4-choroid 5-vitreous 6-retina 7-optic nerve 
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s for which the different initial inner pressures are used are carried out. In 
 inner pressure is assumed although in fact such a state does not exist. The 
own in Fig. 9. It can be seen that this analysis resulted in a deformed shape 
ar and it is different from the actual shape of eyeball buckled up, which 
rom the clinic observation. On the other hand, in the case 2, the analysis is 
teps, i.e. in the first step, a 6.0mmHg(0.0008MPa) pressure are applied to 
 two closed domains inside eyeball as the pressure boundary condition to 
ssure. Then, in the second step, it is turned to the solid-liquid coupling 
ressure as initial inner pressure by imposing the prescribed displacement. 
 in Fig. 10. Obviously the deformed shape of eyeball is different from that 
 but it approximately agree with the actual one. Thus, through these 
itatively confirmed that the initial inner pressure is one factor to influence 
ckling operation on the eyeball.                                           
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   (initial inner pressure: 0 )             (initial inner pressure 6.0 mmHg) 
        (a) Case 1                             (b) Case 2 

P = 6.0mmHg 

Fig. 9 Analysis results of the deformed shapes and Mises stresses 
     for the buckling operation on an eyeball  
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4. CONCLUSIONS 
  
  In this paper, Corresponding to the soft tissues of the eyeball, a two-dimensional 
incompressible hyperelastic FEM program was first developed. The Lagrange multiplier 
method, which is one of the mixed FEM, was employed in this program to impose the 
incompressible constraint. The three types of mixed element i.e. the 4/1, 8/1 and 9/3 elements, 
were introduced into this program in order to discuss the influence of element types on the 
accuracy and efficiency of the analysis and to give the best choice of element for analysis. For 
corresponding to the various practical analysis problems, the boundary conditions prescribed 
by the displacement, force and pressure were made applicable. Using this program, several 
numerical experiments were performed. The results showed that this program is effective, and 
that the 4/1 element can gives the best performance among the three element types from the 
points of view of both the accuracy and the efficiency of the analysis. Finally, to arrive at the 
main purpose in this study, A solid-liquid coupling analysis program was further developed 
based on the above program. Since the retina detachment operation on an eyeball is a 
quasi-static process, the liquid was treated as the static one in this program. Two numerical 
tests including the analysis of the buckling operation on an eyeball, which is most frequently 
performed in clinic to treat the retina detachment, was carried out. From the tests, it was 
shown that the results are satisfactory and, it was qualitatively demonstrated that the initial 
inner pressure of the eyeball is one factor to influence the effect of the operation.  
  As have been mentioned, this work is a fundamental study for our research. It would be 
continued to develop the three-dimensional coupling analysis program by expending the 
two-dimensional program developed here in the future.  
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