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Abstract: Scleral buckling operation is one of the surgeries that most frequently performed in 
clinic to treat the retinal detachment on an eyeball. However, the effect of the operation strongly 
depends on the surgeon’s experience and it is usually difficult to obtain a satisfactory operation 
effect in the clinic. So the computer-aided surgery planning is now greatly desired. In order to 
meet such a desire from the surgeon, we have been developing a 3-D FEM program for coupling 
analysis of the incompressible hyperelastic solid and static liquid. In this paper, a new solid-liquid 
coupling analysis algorithm was proposed to improve its calculation efficiency and to solve its 
memory-expensive problem in order to make its practical use possible. Furthermore, the contact 
treatment function between deformed bodies, which is necessary to treat the contact between the 
detached retina and choriod, was further implemented. The program, thus, has now already 
possessed all the functions needed for the numerical simulation of the buckling operation. Finally, 
a simulation of the encircling buckling operation was carried out and the results demonstrated 
the ability of the program to predict the suitable factors for a effective operation, such as buckle 
shape, buckle location, buckling strength, suture width, Suture strength and so on.          
 
1. INTRODUCTION 
 

The eyeball is a complex 3D structure consisting of over ten types of living tissues, including 
both soft tissues and liquid tissues. The retina is the light-sensitive tissue that turns light signal 
into visual information sent to the brain. It is very similar to film in a camera. In a healthy eyeball, 
the retina always adheres to the choriod and thus the human’s normal vision is guaranteed. 
However, as the retina separates from the choriod due to vitreous liquefying, injury etc., the retina 
detachment occurs and, it will cause impairment or even loss of the vision. In that case, a surgery 
is required to perform in order to improve the vision. There are several types of surgery in the 
clinic to treat the retinal detachment disease. One of them is the scleral buckling operation. In 
this procedure, the wall of the eyeball where the retina detaches is indented by stitching a silicon 
tire to the sclera’s surface directly or after the eyeball is buckled up by a silicon band, which are 
respectively called the segmental buckling operation and the encircling buckling operation, to 
reattach the detached retina.  

Although this procedure is a theoretically effective operation and it is the most common one in 



use today, it is usually difficult to obtain a desired operation effect and its success rate is not so 
high at present, because it demands excellent skill of an experienced surgeon. In other word, the 
effect of this operation procedure strongly depends on the surgical experience at present. In such a 
background, the computer-aided surgery planning is now greatly desired in the clinic. The 
biomechanical simulation employing the finite element method is a useful means to meet this 
desire and it is expected that the simulation in advance can predict suitable factors for a desired 
operation, which govern the operation effect such as buckle shape, buckle location, buckling 
strength, suture width, Suture strength and so on. 

As mentioned above, the eyeball is consisted of both the soft tissue and liquid tissue, and the 
scleral buckling operation is a very complicated procedure. As a numerical simulation application, 
thus, it is a quite difficult case due to the fact that it includes strong geometrical, material and 
contact nonlinearities as well as the problems of the solid-liquid coupling analysis and of the 
suture treatment etc.. To enable this simulation, we have developed a 3D FEM program[1][2] for 
coupling analysis of the incompressible hyperelastic solid and static liquid, in which the contact 
treatment between the deformed body and rigid body was available.  In this paper, a new 
coupling analysis algorithm is proposed to further improve its analysis efficiency and to solve its 
memory-expensive problem. Furthermore, the functions of the contact treatment between the 
deformed bodies and of the suture treatment, which are necessary to treat the contact between 
retina and choriod and to simulate the suture process, is newly introduced. The program thus 
now possesses all the functions required by a simulation of the scleral buckling procedure as 
shown below. 

 
Functions of the 3D FEM program: 
1) Available element type: 3D hexahedral mixed element with eight displacement nodes and one 

pressure node. 
2) Available boundary conditions: nodal displacement, nodal force and pressure. 
3) Coupling analysis for incompressible hyperelastic solid and static liquid. 
4) Available strain energy function of the hyperelastic solid: sr
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5) Contact treatment between the deformed body and rigid body. 
6) Contact treatment between the deformed bodies. 
7) Suture treatment. 
 

To demonstrate the ability of this program, an actual encircling buckling operation is simulated 
using an eyeball model in which the retinal detachment is definitely described and the results are 
given.  
 
2. NUMERICAL METHOD 
2.1 A new FEM formulation for coupling analysis of the incompressible hyperelastic solid and 

static liquid  



 The mixed finite element method based on the total Lagrange formulation is employed for 
analysis of the incompressible hyperelastic solid. The total potential energy function is defined in 
the following form: 
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whereW is the strain energy function expressed by I1 and I2 , the reduced invariants of the right 
Cauchy-Green deformation tensor; λis the Lagrange multiplier; J is the determinant of the 
Jacobian matrix; V0 is the volume of deformation body in the reference configuration; g(u) is the 
potential energy of external force; u is the displacement. 
  Invoking the stationary of (1), the variation of the potential energy can be expressed as: 
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Thus, The equilibrium equation for an element can be obtained by discretizing the above 
variational equation as 
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where εij denotes the Green-Lagrange strain; uNk the node displacement; Xi  the initial node 
coordinate at the reference configuration; φand ψthe interpolations of displacement and 
Lagrange multiplier; rMk the equivalent nodal force corresponding to g(u) in (1).  
   In the solid-liquid coupling analysis, the nodal forces equivalent to the liquid pressure, which 
acts on an quadrilateral element lying on the solid-liquid interface and changes continually 
during deformation, can be derived out as follows (refer to [1] for detail): 
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where Φ is the matrix composed of interpolation functions of the quadrilateral element; F is the 
deformation gradient; n0 and s0 are the inward normal of element and the element area at 
reference configuration and P is the liquid pressure at current configuration calculated by   

L
ini

L
ini

L
L

ini
LL

ini
L

V
VVKPPPP −

−=∆+=                                       (5) 

Pini and Vini are the initial liquid pressure and the initial liquid volume; V is the current liquid 
volume; K is the liquid bulk modulus. 
   Thus, by substituting (4) into the right-hand side of the first equation in (3), paying attention 
to node correspondence, the equilibrium equations of an element with a side on the solid-liquid 
interface for the coupling analysis can be obtained as follows, 
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where is the component of in (4) and  is the others.   L
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   In the previous formulation[1], it is after substituting (5) into (4) to perform this procedure so 
that the nonzero terms in the stiffness matrix significantly increase because the liquid pressure is 
related to displacements of all the nodes on the solid-liquid interface. This can results in a long 
time and a large memory needed for the analysis in the case of using the sparse solver to solve the 
stiffness equation. To improve this disadvantage, in the new formulation, The liquid pressure is 
used as a unknown variable and the relation(5) is directly added to the equilibrium equation set 
to couple the liquid with the solid as shown below.  
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(7) 

where n and m denote the total number of node and element. k denotes the number of the nodes 
lying on the solid-liquid interface. 

  By linearizing (7) using the Taylor series expansion, the global incremental stiffness equation 
for the Newton-Raphson iteration scheme is finally obtained in the following form: 
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From the above (7) and (8), it is clear that the number of nonzero terms in the stiffness matrix 

which increased due to introduction of the liquid is 2×3k+1 and it greatly decreased compared to 
the previous formulation, in which it is approximately 3k×3k. Using the new formulation 
proposed here, thus, an efficient and large-scale coupling analysis will be possible.   
 
2.2 Suture treatment 

  In order to simulate the suture process, a straightforward way is adopted in the program. As 
shown in Fig 1, during the suture process in the sclera buckling operation, a buckle called silicon 



tire is stitched to the surface of the eyeball by slowly pulling suture strings along the buckle 
surface as well as within the planes normal to the generator of the buckle surface. Therefore, this 
process can be considered as an alternative process in which the suture points on the eyeball 
surface are continuously subjected to the nodal forces in the tangent directions to the outlines of 
the buckle cross sections which lie on the same planes as suture points. In this program, thus, the 
calculations in each steps was performed under the nodal force boundary conditions enforced to 
the suture points in such directions, which are sought out in last calculation step, to pursue the 
suture process.  
 

 
 Fig.1  Suture process in the scleral buckling operation 

 
2.3 Contact treatment between the deformed bodies 
2.3.1 Specification and description of the contact surface 

Surface of the eyeball 

Cross section of silicon tire 

Constraint nodal force 

Suture string Suture string 

Suture points 

   The contact surface pair consisting of two surfaces, being called a master surface and a slave 
surface, which have potential to contact with each other during deformation are firstly specified. 
In this program, the master surface are then described in triangular meshes obtained by 
subdividing the quadrilateral meshes that are sides of the hexahedral elements using to analysis 
so that the iteration calculation for finding the natural coordinates of the target points in the case 
of using quadrilateral meshes to describe the surfaces will be not needed and the analysis 
convergence will be improved. 
2.3.2 contact-search algorithm 
   In this contact-searching algorithm, only contact nodes, called hitting nodes, on the slave 
surface are checked against contact segments, the triangular meshes on the master surface, to 
search out contacting nodes from the slave surface. Therefore, the contact between the nodes on 
master surface and the slave surface is not taken into account. For a reliable and efficient contact 
search, in this program, the contact search is performed in two steps: the global search and local 
search. The Position code algorithm[3] and the inside-outside algorithm[4] are employed for the 
global search and the local search, respectively.  
    



2.3.3 contact treatment formulation  
   For the contact problem in the FEM analysis, there are mainly two basic constraint methods 
to be use. These two methods are the Lagrange multiplier method and the penalty method. In 
this program, the penalty method is adopted. 
   In the following formulation, only one hitting point is assumed to come into contact with 
master surface as shown in Fig 2. To impose the contact constraint condition, a penalty function 
called contact potential energy function is introduced. Thus, the total potential energy function in 
(1) is replaced by    
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where αis the penalty constant and G denotes the penetration of the hitting node into target 
segment that is calculated as 

                                                               (10) nxx ⋅−= )( 1thG

where xh and xt1 are the position vectors of the hitting point and a node of the target segment. n is 
the normal victor to the target segment.  
  As Invoking stationary of (9), the variation of the total potential energy can be obtained as 
follows. 
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where, fc  is the contacting force vector, D is a 12×1 matrix and u is the virtual displacement 
vector as shown below. 
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Fig.2  The hitting node and target segment in Contact treatment 



Thus, linearizition the equilibrium equations obtained from (11) by using Taylor series expanding 
and    

(13) 
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the global stiffness equation for the contact problem can be finally obtained in the following form. 
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where Kc and Rc  are induced by contact treatment, which possess nonzero terms only at positions 
of the hitting node and the nodes of the target segment. 
 
3. SIMULATION OF THE ENCIRCLING SCLERAL BUCKLING OPERATION 
 
   The encircling scleral buckling procedure is most frequently applied to clinical treatment of the 
rhegmatogenous retinal detachment. The rhegmatogeneous retinal detachment is caused by a 
retina tear generated mainly by liquefaction of the vitreous body, through which liquefied vitreous 
flow into the space between retina and choriod. The main objective of performing this operation is 
to close the retina tear by indenting the sclera with a buckle in order to prevent the inflow of the 
liquefied vitreous. The demand to the numerical simulation from the clinical surgery is thus to 
simulate the operation procedure and predict the suitable factors for entirely closing the retina 
tear. To demonstrate the ability of this program to meet such a demand, a simulation of the 
encircling buckling operation is carried out using an eyeball model described definitely the 
rhegmatogenous retinal detachment.  
 
3.1 Analysis model and analysis conditions   
   The analysis model of an eyeball is created based on that used in [2]. Assuming the geometry 
symmetry, only a half of the eyeball is modeled for simulation. The finite division and tissue 
division are shown in Fig.3. To describe the rhegmatogenous retinal detachment, the detached 
retina with a causative tear on it at the top of the eyeball, which is said to most commonly occurs 
in clinical ophthalmology, is generated and the tear is located on the equator of the eyeball. In this 
model, 241 linear elastic bar elements and 7421 hexahedral mixed elements are employed to 
represent the zinn’s zonules and the other soft tissues, respectively. The neo-Hooke hyperelastic 
material model, in which the stored strain energy function is expressed as W=c(I1-3), is used for all 
the soft tissues except zinn’s zonule, and the material constants are given in Table 1. The buck 
modulus of 2083.3MPa is used for the liquid enclosed within the eyeball.  

In this simulation, a buckle shape shown in Fig.4 is used and it is located right above the 
retina tear. Furthermore, a 8.90mm of suture width are adopted.   
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     Fig.3  Analysis model for the encircling buckling operation 

 Table 1  Material constants for soft tissues except zinn’s zonules 
cornea-1 sclera-2 ciliary body-3 choroid-4 retina-5 optic nerve-6 lens-7 
0.0333 0.0833 0.01 0.0083 0.0008 0.05 10.0 

Zinn’s zonules Young’s modulus: 100MPa 
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6mm

 
         Fig.4  Buckle shape used for the simulation 

tion is performed in three steps: in the first step, a 15mmHg pressure is applied to 
faces of the eyeball as the pressure boundary condition to generate its normal 
ssure; in the second and the third steps, the coupling analyses are performed to 
all by moving a lot of rigid parts that was imagined as the silicon band and silicon 

metrical directions of the eyeball, and to pursue the sewing process by imposing 
the suture points.  

sults 
tion was completed within 20h in case of using the Pentium-IV 2GHz processor, and 
 memory needed for calculation was about 600MB. It implicates that this 3D 
sis program with the newly proposed solid-liquid coupling analysis algorithm is 
ut an efficient and large-scale analysis required by a practical simulation of the 
g operation procedure. 



  The simulation results in each calculation step are given in Fig.5. In the second step(buckling 
process), a weak indenting effect on the sclera , called buckle effect, was obtained, and the 
detached retina gradually closed to the choriod and finally began to come into contact with it, 
accompanying to a significant elongation of the optic axis. In the third step(sewing process), then, 
the anterior of detached retina containing the retina tear thoroughly reattached to the choriod 
and the retina tear was entirely closed due to a strong buckle effect yielded through sewing. In 
this step, however, the optic axis changed to degrease and large deformation、serious concentrated 
stress on the sewing points was locally caused.  From the results, it can be seen that the 
simulation was successfully carried out, and the stress distribution as well as the geometry 
information including the change in length of the optic axis, the buckle effect, the contact between 
the retina and choriod and the contact between the buckle and sclera etc. were obtained 
reasonably.  
 
4. CONCLUSION 
 

In this study, a new algorithm for coupling analysis of the incompressible hyperelastic solid and 
static liquid was proposed.  Using this algorithm, the number of the nonzero terms in the 
stiffness matrix can be greatly reduced compared to the previous one so that an efficient and 
large-scale FEM analysis demand from an practical simulation of the sclera buckling operation 
will become possible. An effective formulation of the contact treatment between deformed bodies 
which is necessary for treating the reattachment of the detached retina to the choriod and 
therefore for investigating the conditions of closing the retina tear was also proposed and 
implemented to the program. Thus, this program has now already possessed all the functions 
needed for a simulation of the scleral buckling operation as shown in the introduction. In order to 
demonstrate the capability of this program, then, a encircling buckling operation procedure was 
carried out using an eyeball model which described definitely the detached retina as well as the 
retina tear on it and used nearly 10,000 elements. The simulation was successfully performed and, 
the calculation time and the calculation memory needed for the simulation proved that it was 
applicable for the practical use. Furthermore, from the simulation, the results of the stress and 
the results of the deformation including the change in optic axis, the indenting effect etc., 
especially the reattaching state of the retina to the choriod were obtained reasonably. It can be 
deduced, therefore, that the suitable factors for a desired retinal buckling operation measured 
mainly by the effect of closing the retina tear, such as the buckle shape, buckle location, buckling 
strength, suture width, suture strength and so on, will be predictable by performing a series of 
simulations under the different factors using this program, prior to the practical surgery. 
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Fig.5  Simulation results of the geometry configuration and Mises stress distribution in each analysis step 



ACKNOWLEGEMENT 
We would like to thank ASTOM R&D(Advanced Simulation Technology of Mechanics R&D, Co. 

Ltd., RIKEN) for providing us a sparse solver of solving the stiffness equation.  
 

REFERENCE 
1. Z.G.Sun and A.Makinouchi, Simulation of Retina Detachment Operation on an eyeball, 

RIKEN SYMPOSIUM(2001), 18-33. (in Japanese) 
2. Z.G.Sun, A.Makinouchi and H.Yabe, Development of a 3D FEM Program for Numerical 

Simulation of the Retina Detachment Operation on an Eyeball, The 14th Computational 
Mechanics Conference(2001), 301-302. (in Japanese) 

3. M.Oldenburg and L.Nilsson, The Position Code Algorithm for Contact Search,  
Int. J. Numer. Mech. Engng.,  37, 359-386(1994). 

4. S.P.Wang and E.Nakamachi, The Inside-Outside Contact Search Algorithm for Finite Element 
Analysis,  Int. J. Numer. Mech. Engng.,  40, 3665-3685(1997). 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 


