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Abstract 

Arterial branches are found to be a major site for formation of arterial plaque.   In this study, we investigate several of 

the main parameters that influence the local flow into an arterial branch model.    In particular, we are interested in the role 

of the local geometric parameters of the bifurcation on the overall flow.   Specially, how the changes in the bifurcation 

geometry influence the distribution of axial wall shear and pressure in the model.   The major geometric factors influencing 

this flow are the bifurcation area ratio and angle.   The flow in a large number of geometric variations of our branch model 

is numerically simulated.   The models at several branch area ratios in the range of 0.4 2.0≤ ≤AR  are considered.   In 

the above range of area ratios, we also create various versions within a range of branch opening half-angle of 

25 4π θ π≤ ≤ .   The flow in the above models is calculated for the inlet flow Reynolds numbers of 250, 500, 1000, 

and 2000. 

Area ratio seems to have the largest influence on the flow within the physiologically relevant range of the parameters 

considered.   Increasing the area ratio can lead to relatively large flow separation in the vicinity of the bifurcation region. 

At higher values of the opening angle of the bifurcation, the possibility and severity of flow separation at the appropriate 

wall location increases.   The relative influence of the convective acceleration of the flow, as represented by the value of 

the flow Reynolds number is also investigated.   The particular value of the area ratio or bifurcation angle, necessary to 

initiate flow separation, is influenced by the Reynolds number of the incoming flow in the mother tube.   The relation 

between the influence of these parameters on the flow and the formation of some vascular diseases reported in the literature 

are also examined. 
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Introduction 

In the human cardio vascular system many vascular diseases are found in the vicinity of vascular branches.   

Atherosclerosis is commonly found near regions of high curvature or bifurcation of large and medium size arteries.   The 

tendency for plaque to form around and near the regions of vessel bifurcation is a well-known fact.   Having the same 

general systematic risk factors for atheroma results in plaque formation around different arterial bifurcations for different 

individuals.   In carotid bifurcations, with identical general risk factors in a given individual, we have asymmetry in the 

formation of carotid plaque.   These seem to indicate the importance of the each bifurcation’s unique geometry in plaque 

formation.   Hence, we can hypothesize on the crucial role of local hemodynamic factors in plaque formation and its local 

distribution.   Local hemodynamic forces undergo large changes in the vicinity of these regions due to the interaction of 

primary flow with the associated local secondary flow.   Fluid mechanical forces directly influence endothelial cell 

structure and function on the vessel walls.   The exact mechanisms of how the hemodynamic factors influence plaque 

formation and its further development are still subject to debate [1-5].   However, it is hypothesized that low wall shear 

stress regions and regions of high particle residence time are locations of high risk for vascular diseases.   Hence, a better 

understanding of the hemodynamics of these local regions using CFD is important 

There are many bifurcations in the arterial system with great variations in geometrical parameters within each one.   

Lou and Yang [6] in an excellent review of the bifurcation flow literature of that time summarize that the most important 

parameters influencing the flow into a branch are bifurcation angle, area ratio, the local wall curvature of the bifurcation 

region, and the flow waveform.   They point out that the angle of aortic bifurcation, where the aorta bifurcates into two 

common iliac arteries, can vary between to .   Sharp et al. [7] in a review of abdominal and pelvic arteriograms of 

100 patients divided the patients based on the relative level of the aortic bifurcation.   In the 48 patients, whose aortic 

bifurcations were at or lower than the fourth lumbar vertebral resulting in a higher average bifurcation angle of , only 7 

patients (14%) suffered from occlusive disease.   In the remaining 52 patients with the aortic bifurcation above the L4 level 

with an average bifurcation angle of , 21 patients (40%) suffered from occlusive disease. 
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Karino and Goldsmith [8] in a set of careful flow visualizations studied the flow patterns and “vortex formation” 

(separation) in a model T-junction.   They varied the branching angle and the side to main tube diameter ratio.   They found 

that the diameter ratio (a measure similar to area ratio) is more influential on the flow.   The effect of the branching angle 

on the flow separation in the main tube was much smaller.   However, they reported an appreciable influence of the 

branching angle on the side tube separation.   

Schulz and Rothwell [9] in a recent comprehensive study of natural variations in carotid bifurcation anatomy 

reviewed 5395 angiograms from 3007 patients.  Amongst many parameters, they measured the following area ratios: 
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internal to common carotid (ICA/CCA), external to common carotid (ECA/CCA), and the bifurcation total area ratio 

((ICA+ECA)/CCA).   They found that the normal range of the bifurcation area ratio is between 0.38 to 1.28.    Bifurcation 

anatomy also showed no systematic difference in any of their calculated parameters between left and right carotids within 

individuals.   However, they reported considerable asymmetry within individuals in regards to ipsilateral and contralateral 

bifurcations to the stroke site.   For example, they found that 42% of the patients had a side difference of ≥25% in the total 

area ratio of the bifurcation. 

Friedman et al. [10,11] studied the side branches off of the left anterior descending coronary artery of 15 

angiographically lesion-free human hearts obtained from autopsy.   They found a strong positive correlation between 

intimal and medial thickening and large bifurcation angles.  However they reported a weaker and more local correlation 

between the area ratio at the bifurcation site and the medial thickening.   They also suggested that large branching angles 

are associated with more asymmetric thickening. 

Fisher and Fieman [12] investigated the arteriograms of 40 male patients with carotid stenosis of less than 50%.   

They measured stenosis diameter, (ICA/CCA) area ratio, and bifurcation angle in all those cases.   They found significant 

association between diameter stenosis asymmetry and (ICA/CCA) area ratio asymmetry.   However, there was no such 

association between stenosis asymmetry and bifurcation angle asymmetry.   Which seems to indicate that area ratio is more 

important than bifurcation angle in carotid stenosis.   Spelde et al. [13] in a post-mortem examination of 100 carotid 

bifurcations measured the total area ratios.   The calculated mean value of the bifurcation area ratio for the 60 normal 

carotids was 1.47, and the mean value for the 40 diseased bifurcation was 0.99.   They also found no difference in the mean 

values between right and left carotids.   Perktold and Resch [14] studied the flow into a carotid bifurcation and showed that 

small variations in the curvature of the sinus wall can change their results.   Perktold et al. [15] further investigated the 

influence of the bifurcation angle on the flow into a carotid bifurcation.   They found that the flow separation occurred over 

the major part of the cycle at larger angles, while at smaller angles it only occurred during the systolic phase of the 

particular waveform they used. 

Tadjfar et al. [16-18] using the direct simulation of the governing equations discuss the development of a finite 

volume flow solver for the study of flow in the human cardiovascular system.  This code was validated and verified by 

comparing with results of flows into bends and other biological flows.   Further, they studied the steady and pulsatile flow 

into a 45° branched tube.   Smith et al. [19] discuss the flow into various branching tubes by theoretical modeling and 

direct numerical simulation.   Tadjfar and Smith [20] by comparing the results of the slender flow theory with direct 

numerical simulation investigate the flow inside of a circular cylinder that splits into two half cylinders at a bifurcation 

junction. 
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Here, we want to concentrate on the influence of the geometrical parameters: area ratio and bifurcation angle on the 

flow into a model three-dimensional bifurcation.   In order to minimize the number of possible variations, we maintain 

daughter tube symmetry in terms of diameter and bifurcation angle.   We can also study the influence of the convective 

acceleration on the flow by changing the inlet flow Reynolds number.   But, we avoid the influence of the unsteady 

acceleration and the waveform shape by considering steady flow.   We assume the blood vessels walls are rigid.   The 

mother vessel of the branch is a circular tube that bifurcates into two daughter tubes of equal size.   The mother tube opens 

in the middle into two diverging daughter tubes of circular cross sections (see Figure 1).   The flow in a large number of 

geometric variations of our branch model is numerically simulated.   The models at several branch area ratios, defined as 

the ratio of total cross sectional area of the daughter tubes to the cross sectional area of the mother tube, in the range of 

 are considered.   In the above range of area ratios, we also create various versions within a range of 

branch opening half-angle of 

0.4 2.0≤ ≤AR

25 4π θ π≤ ≤ , defined as the angle between the axis of the mother tube and that of any 

of the daughter tubes (they are the same for symmetric bifurcations studied here).   The flow in all the above models is 

calculated for the cases with the inlet flow Reynolds number of 500 and 1000.   In some of the above models, the flow is 

also simulated at Re = 250 and Re = 2000.   The influence of the area ratio, inlet flow Reynolds number, and the branch 

opening half-angle on the distribution of axial shear stress and pressure along the branch walls and the formation of flow 

separation in the vicinity of the branch bifurcation are investigated. 

 

Numerical Method 

It is assumed that the fluid is homogeneous, incompressible and Newtonian. The governing equations are the 3-D 

incompressible, unsteady Navier-Stokes equations in the strong conservative form.  The equations are non-dimensionalized 

and written in a generalized curvilinear coordinate system, such that:  
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In the preceding equations p is pressure, and  (u, v, w) are respective velocity components in the physical Cartesian 

coordinate system: (x, y, z).   Reynolds number of the flow is defined based on the reference velocity and tube diameter as 

refRe = U D υ .   Here, t denotes the real physical time, τ is the pseudo time, and β is the pseudo-compressibility 

coefficient.    V (t) is the time varying volume of the cell.   S (t) denotes the surface of the control volume, and  is the 

outward unit normal vector at the surface of the control volume, where 

n̂

gv  is the local velocity of the moving control 

surface.   Note that the term q  associated with the pseudo time is designed for an inner sub-iteration at each physical time 

step, and will vanish when the divergence of velocity is driven to zero so as to satisfy the equation of continuity. 

For a structured boundary-fitted computational coordinate system: (ξ, η, ζ) and a cell-centered finite volume 

formulation, we can write equation (1) in a semi-discrete form for each cell centered at point (i, j, k): 

ijk ijkijk

qQ R 0 .      (3) 
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And the modified flux terms are defined as: 
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The normal-area vector in the ξ-direction is: 

Sn nx ny nzS ,S ,Sξ ξ ξ ξ⎡ ⎤= ⎣ ⎦      (6) 

In the above formulation the flow Strouhal number is defined as (St D U tref ref )= . The physical time derivatives 

are differenced using the second order trapezoidal implicit method, while the first order Euler implicit differencing is used 

on the pseudo-time derivatives.   The inviscid fluxes are differenced using third-order upwind implementation of Roe’s 

flux-difference split averaging technique.  Second order central differencing is used on the viscous fluxes.  To maintain 

second order spatial accuracy a special treatment at the boundaries is required. 

 Flow Solver. All the numerical simulations are achieved by using the fast, parallel, and time accurate solver 

of Tadjfar et al. [16-18].   The solver is capable of dealing with moving boundaries and moving grids.   It is designed to 
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handle complex, three-dimensional vascular systems.   The computational domain is divided into multiple block 

subdomains.   At each cross section the plane is divided into twelve sub-zones to allow flexibility for handling complex 

geometries and, if needed, appropriate parallel data partitioning.   Modeling of the human vascular flow could require 

massive amounts of computation.   Accurately simulating a large three-dimensional model of a patient’s vascular system 

requires high-speed hardware with large memory space.   It is now widely recognized that the parallel processing is the 

platform for processing such systems.    Communication between the subdomains of the flow is implemented using MPI 

message-passing library.   The code is capable of being implemented on both shared and/or distributed memory 

architectures. 

Boundary Conditions. At the inlet of the mother tube a fully developed Poiseuille flow is assumed for the 

velocities, and the condition  is imposed on the pressure, where s is the local streamwise direction along the 

centerline of each tube. We also define a local normal direction on the wall, n, which is always normal to the local wall and 

defined inwardly positive towards the center of the tubes.   Both s and n are nondimensionalized by the main tube diameter.   

At the outlet of each daughter tube the pressure is prescribed as 

( ) 0∂ =ss P

0=P , and for the velocities the condition  

is imposed.  Along the rigid walls the no slip condition is assumed 

( , , ) 0∂ =ss u v w

( , , ) 0=u v w .   All the dimensions are 

nondimensionalized by the mother tube diameter, MD, and all the velocities are nondimensionalized by the mean (bulk) 

velocity of the inlet profile. 

Grid Independence. Computational grids for each of the various cases considered are generated based on 

the branch model chosen here.   Three grids of different grid density and size were considered: 1) Grid1 extends 15 MD 

upstream and 10 MD downstream of the bifurcation in each daughter tube.   This grid comprises of 55,230 cells.   In the 

mother tube, we use a 42×51×15 grid, which implies using 42 cells in the tube axial direction by 51 cells in the azimuthal 

direction and 15 cells in the radial direction at each cross section of the tube.   Similarly in each of the daughter tubes, we 

use a 33×35×10 grid.  Appropriate grid stretching near the walls in the radial direction and near the bifurcation region in 

the axial direction is implemented.   2) Grid2 is a lower density version of Grid1 with 41,280 cells.   We use a 32×51×15 

grid in the mother tube and a 24×35×10 grid in each of the daughter tubes.   3) Grid3 is a much shorter grid that extends 

only 5 MD upstream and downstream from the bifurcation comprising of 57,375 cells. For this high-density grid we use a 

25×51×15 grid in the mother tube and in each of the daughter tubes.  This grid for the case with / 8θ π=  is shown in 

figure 1.    

All the simulation cases were repeated for both Grid1 and Grid3 and some cases were also tested with Grid2.   The 

results were close in all cases for most of the flow, but for the peak values occurring in a very small section of the walls 

very close to the bifurcation region.   The maximum difference in the peak values of the wall shear and wall pressure 
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between all the grids considered here was less than 6%.  The centerline pressure along the mother tube (MT) and left 

daughter tube (LDT) for the case of AR=1.0 and θ=π/8 at Re=500 for all three grids are shown in figure 2a (The worst 

comparison location).   The normal gradient of the axial velocity, a measure of wall shear, running along a line from the 

center of the right wall in the mother tube and along the center of the outer wall in the right daughter tube (RDT) is shown 

in figure 2b.   Any of the three grids produces grid-independent numerical results.  All the charts presented here are based 

on the Grid1 simulation results and all the visualization figures are presented on Grid3.   

     

Flow into An Arterial Branch Model 

A systematic study of the flow into a three dimensional model of an arterial branch is performed.   The flow into an 

arterial branch with various values of the total area ratio and the opening angle of the bifurcation at several Reynolds 

numbers are considered.   Due to the enormity of the task, we limit this study to the case of symmetric bifurcations.   

However, we solve over a full grid comprising of the entire branch.   Hence, we are capable of solving for any asymmetry 

in shape, size, branch angle, and any tube differences in general in the future.   We consider the role of the convective 

acceleration on the flow as shown in different Reynolds number simulations.   But, the influence of the unsteady 

acceleration on this flow, as controlled by the shape and type of the flow waveform, is currently underway and will be 

reported in another paper.   All the computational results presented here are achieved by allowing the residual on velocities 

to drop to  and the residual on mass conservation drop to .  -1010 -710

Several lines along the axial direction in the tubes are chosen to present the distribution of flow variables.   MT 

centerline is defined as the centerline of the tube along the axial direction in the mother tube.   MT right line is defined as 

the line along the wall in the middle of the right wall (3 o’clock looking into the tube from downstream).   MT top line is 

defined as the line along the wall in the middle of the top wall (12 o’clock looking into the tube from downstream).   RDT 

centerline is defined as the centerline of the tube along the axial direction in the right daughter tube.   RDT outer line is 

defined as the line along the wall in the middle of the outer wall (3 o’clock looking into the tube from downstream) which 

is the continuation on MT right line into the RDT.   RDT inner line is defined as the line along the wall in the middle of the 

inner wall (9 o’clock looking into the tube from downstream) which is the line in the middle of the new dividing wall 

started after the bifurcation. 

Flow Into A 45° Branch. First, we consider the flow for a case in the middle of our parametric range of a 45° 

bifurcation ( / 8θ π= ) with an area ratio, AR = 1, as shown in figure 1.   This implies that the whole flow in the mother 

tube will not see any flow expansion since the total cross sectional area remains constant through the bifurcation.   In fact, 

there is a little flow acceleration due to the formation of new boundary layers in the newly formed inner walls of the 
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bifurcation in the daughter tubes.   The contour plots of streamwise velocity of the steady flow into this bifurcation at Re = 

500 are presented in figure 3 (Grid3).  The inlet velocity profile of a Poiseuille flow is presented in figure 3a.   In the 

mother tube, near the bifurcation at 0.1MD to the junction, we can see the influence of the oncoming bifurcation walls.   

The high velocity core of the flow is showing a double peak as if it is getting ready to divide into the daughter tubes (figure 

3b).   In the daughter tubes, near the entrance at 0.3MD after the junction, the high momentum fluid core is pushed to the 

inner walls (towards the bifurcation center) of the tube (see figure 3c).   This is due to the position of the high velocity fluid 

core in the mother tube.   This would result in a local region of high pressure and high wall shear stress at the inner walls of 

the daughter tubes.   The local high-pressure region interacts with the surrounding boundary layers to set up the well-

known secondary flow to take the fluid back towards the outer side along the tube walls.  Hence, the low momentum fluids 

near the outer walls are pushed into the core of the daughter tubes.   This can clearly be seen in the figure 3d, where the 

streamwise velocity contours are presented at 1MD after the junction.    

Such secondary flow patterns are typical of the flow at tube bends.   However, in a branch the secondary flow pattern 

is enhanced.   This is due to the position of the incoming high momentum core of the mother tube, which is already located 

near the inner walls of the daughter tubes prior to bifurcation.   The influence of this secondary flow can be seen all the 

way to the outlet of the daughter tubes.   Figure 3e shows the streamwise velocity contours at 2.5MD in the daughter tubes, 

where the formation of the typical crescent-shape contours is evident.   There is a lower velocity core in the middle of the 

tubes with the higher velocity fluids near the walls of the tube creating higher shear stresses at the wall.   However, by the 

action of viscous diffusion the velocity gradients will gradually dissipate.   This is clearly evident in the velocity contours 

at 5MD (at the outlet of Grid3) in the daughter tubes presented in figure 3f.   The same thing can be seen in the results for 

the longer Grid1, where the viscous diffusion has further eroded the secondary flow by 10MD at its outlet. 

The Influence of Bifurcation Angle. Here, we investigate the influence of the bifurcation angle on the 

flow.   We consider a physiologically relevant range of branch opening half-angle of 25 4π θ π≤ ≤ which corresponds 

to the bifurcation angles of roughly 14° to 90°.   To fix other parameters and concentrate on the bifurcation angle only, we 

present data for the flow of the branches with AR = 1 at Re = 500.   Figure 4 presents the pressure distributions along the 

centerlines of MT and RDT at various angles.   The pressure drop is mostly linear except in the region from 1 MD 

upstream to 2 MD downstream of the bifurcation.   In the MT centerline, near the bifurcation, the pressure rises due to the 

approaching stagnation region of the dividing surface.   In the beginning of the RDT centerline, the flow moves away from 

the vicinity of the stagnation region, in the flow divider surface in between the two daughter tubes, and continues with the 

pressure drop.   As the branch half-angle is increased from π/25 to π/4, the non-dimensional pressure at s = 1 is increased 
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from 2.45 to 2.8, indicating a pressure increase of about 14% to adjust for the extra losses due to the enhanced secondary 

flow patterns.    

Figure 5 presents the normal gradient of the axial velocity, a measure of wall shear, along the right lines of MT and 

their extension along the outer lines of RDT at various angles.   The velocity gradients are normalized by their fully 

developed values in a Poiseuille flow.   The entire domain is non-dimensionalized by the MT parameters, which results in 

the Poiseuille flow velocity gradient value of 1 in the mother tube and 2  in the daughter tubes for the case with AR = 1.   

We can observe two emerging trends in this figure.   In the outer wall of RDT, we can see a tendency towards separation 

near the bifurcation region as θ is increased.   In fact, at higher values of Re or AR there would be flow separation as will 

be shown later.   Just before the bifurcation region along the right wall of MT, as θ is increased, we can see a gradual 

increase in the peak value of the wall gradient from 1.12 for the case with θ = π/25 to 1.58 for the case with θ = π/4 (41% 

increase).   There is a short upstream influence and the Poiseuille flow still exists past the location at s = 12.   There is a 

narrowing of the upstream influence at higher bifurcation angles, which we will discuss more about it later.    

Figure 6 gives the distribution of axial wall shear along the inner line of RDT.   Immediately near the bifurcation 

region, there are high values of wall shear.   For θ = π/25 branch the initial wall gradient is 8.4 (600% of the Poiseuille 

value), as θ is increased this initial value drops to 5.4 for the case with θ = π/4.   However, this initial peak drops faster for 

lower angles as we move away from the bifurcation region, resulting in higher values of shear at higher branch angle.   The 

axial wall shear distributions along the top line of MT are presented in figure 7.   Very close to the bifurcation, the wall 

shear values drop as θ is increased.   This leads to separation at the top wall of MT, just before the bifurcation, for the case 

with θ = π/4 even at this Reynolds number (Re = 500).   There is also a second trough in the shear value further upstream 

and a tendency for the spreading of the upstream influence as branch angle is reduced.   This counter intuitive behavior is 

probably due to the particular way of smoothing (geometric transition) from MT to the daughter tubes, that is chosen here 

and is case specific.   We will talk about this more in the discussion section. 

The Influence of Reynolds Number. We can study the role of the convective acceleration on the flow by 

varying the flow Reynolds number.   This is another important factor that influences the formation of separation near the 

branching region.   By keeping the geometry and the inlet profile the same, increasing the flow Reynolds number is 

equivalent to lowering viscosity of the fluid.   Pressure distributions along the centerlines of MT and RDT at different 

Reynolds numbers for the cases with θ=π/8 and AR = 1.0 are given in figure 8.   The pressure gradient is mostly linear 

except near the bifurcation.   As Re is decreased from 2000 to 250, the non-dimensional pressure at s = 1 goes from 0.86 to 

4.78, indicating a pressure increase of about 560%.   The value of the peak in the pressure distribution in the mother tube, 

near the stagnation region of the dividing surface, goes from 1.41 to 3.96 (280% increase). 
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Figure 9 presents the axial wall shear along the right lines of MT and their extension along the outer lines of RDT at 

several Reynolds numbers for the cases with θ=π/8 and AR = 1.3.   As mentioned previously, at higher values of Re there 

is a region of back flow (separation) at the bifurcation area.   The upstream influence of Reynolds number in the peak 

values of wall shear prior to the bifurcation is minimal.   The size of the separation region and the strength of the back flow 

increase with the Reynolds number.   Hence, a much stronger secondary flow is created as Re is increased.   The viscous 

damping of the induced secondary flow and its effect on the main flow require a much longer distance at higher Re values.   

The distributions of axial wall-shear along the inner line of RDT are given in Figure 10.   Immediately after the bifurcation 

there are high values of wall shear, which drops rapidly as the flow moves downstream.   For the flow at Re = 250, we can 

see a return to the fully developed profile and the non-dimensional shear value of ( )
3

22 1.3  in the daughter tubes for 

the case with AR = 1.3. 

 The Influence of Area Ratio AR. Another important geometric factor that influences the flow in a branch is the 

area ratio.   Pressure distributions along the centerlines of MT and RDT at several area ratio values are presented in figure 

11 for the cases with θ=π/8 and Re = 500.   The pressure gradient is mostly linear except near the bifurcation.   As AR is 

increased from 0.4 to 2.0, the non-dimensional pressure at s = 1 drops nonlinearly from 15.2 to 0.98.   Figure 12 presents 

the axial wall shear along the right lines of MT and their extensions along the outer lines of RDT at several values of the 

area ratio for the cases with θ=π/8 and Re = 1000.   The upstream influence of the bifurcation is limited to less than two 

diameters in the MT.   At higher values of AR, prior to the bifurcation in the mother vessel, the wall-shear values drop to 

an eventual back flow region.   For the case with AR = 2.0, this separation region is fairly large (almost 3 MD in length).   

For the cases with area ratios that are low enough not to cause a flow separation, the wall shear initially increases in the 

MT to a peak value prior to the entrance of the daughter vessel.   The peak shear values are 1.5, 3, and 7 times the fully 

developed values for the cases with AR = 1.0, 0.7, and 0.4 respectively.   For the case with AR = 0.4, we can see a second 

wall-shear peak value in the outer walls of the daughter vessel.   All the wall shear values eventually reach their fully 

developed values further downstream in the daughter vessels as the viscous diffusion damps out the effect of the secondary 

flow on the velocity profiles. 

The axial wall shear distributions along the top line of MT at different AR values for the cases with θ=π/8 and Re = 

1000 are presented in figure 13.   There seems to be an initial drop, followed by a peak and a final drop in the shear values 

just prior to the bifurcation.   The wall shear values in the initial drop get lower, and the trough location moves downstream 

as AR is reduced.    There exists a back flow region, 1 MD in length and located at s = 14.4, for the case with AR = 0.7.   

The peak values in the wall shear also get higher, and the peak value location moves downstream as AR is reduced.   The 
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peak shear values are 1.6 and 2.9 times the fully developed values for the cases with AR = 1.0, 0.7 respectively.   The wall 

shear values at the final drop location, s = 15, go from almost zero to 1.3 as AR is reduced from 2.0 to 0.7. 

The Back Flow Region Shape. Separation region is of particular importance in the study of arterial 

hemodynamics.   These areas are generally associated with low momentum fluid particles.   Hence, resulting in low wall 

shear stress regions and large particle residence times.   The definition of separation regions in three-dimensional flows is 

complex.   It involves defining singular points and the limiting streamlines in the flow field (see Tobak and Peake [21]).   

Here, we look at the back flow regions as a subset and indication of the complexity of the three-dimensional separation 

regions involved.   In figure 14, we can see the influence of the area ratio on the shape of the back flow region.    In the 

case, with Re =1000 at the area ratio of AR = 1.3 (Fig. 14a) we can see a small region of back flow is present on the outer 

wall of the daughter branches.   Increasing the area ratio to AR = 1.6 and AR = 2.0, enlarges the back flow region 

significantly, as can be seen in figures 14b and 14c respectively.   The shape of the back flow region is influenced by the 

magnitude of the Reynolds number of the flow.   However, the influence of the Reynolds number is not as significant as 

the area ratio on the size of the separation region. 

 

Discussion 

We have investigated the steady flow into an arterial branch model in detail.   In particular, we were interested in the 

role of the local geometric parameters of the bifurcation on the overall flow.   Specially, how the changes in the bifurcation 

geometry influence the distribution of axial wall shear and pressure in the model.   The patterns that developed were 

discussed in length in the sections presented previously.   However, we shall summarize and make further comments below 

followed by some discussion of our results in relation to the clinical measurements and other works that were referred to in 

the introduction. 

The high velocity core of the incoming profile has to turn into the daughter tubes in advance of the approaching 

stagnation region of the new dividing surface.   In general, such upstream influences are short and abrupt, with a lot of the 

local details to be governed by the local wall curvatures and geometry.   The pressure distribution is mostly dictated by the 

local geometry of the mother and daughter vessels (linear in our straight tube segments).   The influence of the bifurcation 

on pressure is limited to mostly within 2 diameters upstream and downstream of the bifurcation dividing surfaces.   The 

upstream influence of the bifurcation geometry on the velocity profiles and wall shear values is also limited to within 2 

diameters.   However, the downstream dissipation of the effects of the induced secondary flow, created at the bifurcation, 

on the velocity profiles and the wall shear distributions may last much longer and is strongly influenced by the Reynolds 
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number of the incoming flow.   Regions of flow separation, associated with slow flow, are of high interest in the vascular 

hemodynamics research.   Two locations in the mother tube, middle of the top and bottom walls prior to the bifurcation, are 

prone to separation.   This is due to existence of the stagnation regions of the dividing surface that initiates the newly 

formed inner walls of the daughter tubes.   The outer walls of the daughter vessels at their entrance and their continuations 

into the mother vessel are also separation prone. 

As the opening angle of the bifurcation is increased the possibility and severity of flow separation at the appropriate 

wall location increases.   Increasing the bifurcation angle from 14° to 90°, for the cases with AR = 1 and Re = 500, resulted 

in a 14% increase in the peak pressure value near the entrance of the MT (figure 4).   Similarly, the peak value of the wall 

shear on the right wall of MT increased by 41% (figure 5).   At this Reynolds number there was no flow separation in the 

outer walls of the daughter tubes and a small separation region was observed in the top and bottom walls of MT only for 

the highest bifurcation angle considered.   The local details of the wall shear distributions, two troughs and one peak, on 

the top wall of MT presented in figure 7 are probably due to the local smoothing of the wall curvatures as the mother and 

daughter vessels join.   Tadjfar and Smith [20] reported only one trough just prior to the bifurcation in the wall shear 

distribution.   In their model, a straight cylinder that opens into two half cylinders with sharp corners, they have avoided 

wall curvature smoothing altogether.   In figure 6, the values of the axial wall shear along the inner wall of RDT approach 

the fully developed flow value asymptotically.   At the end of our computational domain the influence of the secondary 

flow has not been damped out yet for all the branch angles considered at that Reynolds number.   Interestingly, the initial 

peak at the entrance to RDT drops as θ is increased.   This is due to the fact, that the flow has not yet turned far from the 

wall at the entrance and there is a large component of the normal velocity gradient as well as the axial wall gradient in the 

normal direction.   Within a short distance, less than half diameter, the lines cross and we have higher axial shear values for 

higher bifurcation angle cases.  

At higher values of the incoming flow Reynolds number, there is a higher possibility of formation of a separation 

region near the bifurcation and that the size of the separation region to be larger.   Increasing the Reynolds number from 

250 to 2000, for the case with θ=π/8 and AR=1.0, resulted in a 560% drop in the pressure value at the entrance of MT 

(figure 8).   This is less than a linear decrease of 800% as one would get for flow in a straight tube ( ).    

This difference is probably caused by the extra losses due to the increase in the strength of the induced secondary flow.   

Similarly, for the case with θ=π/8 and AR=1.3, the non-dimensional pressure at s = 1 goes from 3.28 to 0.4 (820% drop).   

However, here the area ratio is not one anymore and there is an over all increase in the cross sectional area in the daughter 

tubes.   In figure 10, as we move away from the bifurcation the wall shear values drop rapidly in the inner walls of RDT.   

( ) 32 / Re∂ = −s P
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However, this drop is delayed at higher values of Re due to the narrowing of the daughter tubes at their inlet because of the 

local separation there.   At Re = 250, the peak shear value is 6 and it’s location is at the entrance of the RDT, s = 15, but at 

Re = 2000 the peak value is 7.2 (20% increase) and it is located further downstream at s = 15.3. 

Area ratio seems to have the largest influence on the flow within the physiologically relevant range of the parameters 

considered.   Increasing the area ratio can lead to relatively large flow separation on the outer walls of RDT in the vicinity 

of the bifurcation region.   As the area ratio is increased from 0.4 to 2.0, the inlet pressure drops by 1,550% for the case 

with θ=π/8 and Re =500 (figure 11).   In fact, the relative pressure drop is almost inversely proportional to the square of the 

respective AR ratios.   At higher values of the area ratio, there is none or a very small rise from the Poiseuille values in the 

axial wall shear before dropping to negative values (back flow) prior to the bifurcation junction on the right walls of MT 

(figure 12).   For the case with AR = 0.4, there is a small initial drop in the value of wall shear that has moved further 

upstream and no upstream separation region exists.   The peak value in the wall shear reaches 7.5 before it sharply drops to 

–1.1 at s = 15.   This trend change in the wall shear behavior on the top wall of MT prior to the bifurcation requires further 

investigation.   In figure 14, the projected cross sectional area of the back flow regions in the LDT and the projected span 

of the back flow regions in RDT are presented at three different area ratios.   The resemblance of these shapes to the actual 

plaque shapes in arteries is amazing. 

Our observations are in full agreement with the conclusions of Karino and Goldsmith [8] that the area ratio has a 

stronger influence on the flow than the bifurcation angle.   However, theirs was based on observation of flow visualization 

patterns of side tubes branching from a main tube, here, we have quantitative values to compare the relative importance of 

each effect on a Y-shaped branch.   The data of Sharp et al. [7] on occlusive disease seems to indicate a correlation 

between higher position and acute angles in aortic bifurcation and the disease.   One has to be very careful to compare CFD 

results with arterial disease data.   There are many factors we have not included in our analysis, the inlet wave form, wave-

reflection corrected unsteady outlet boundary conditions, wall dynamics, wall elasticity, wall material properties, etc.   Any 

of these factors alone can change the flow.   However, one can make some generalized observations with caution.   We can 

not find any explanation for their observation.   May be we need to include other factors in our analysis or we need to have 

more data on the area ratio of their cases as well.   We seem to be in agreement with the observations of Friedman et al. 

[10,11] on the positive correlation between large bifurcation angles and the possibility of plaque growth near the 

bifurcation and its location.   Our results support the findings of Fisher and Fieman [12] that area ratio is a more influential 

parameter than the bifurcation angle on the formation of carotid stenosis. 
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Fig. 1 Model of a 45°-Branched tube (θ=π/8 ) with  AR = 1 on Grid3. 

 

 

Fig. 2a Grid influence: pressure distribution along the centerline of the mother and 

the left daughter tube for the case AR=1.0 and θ=π/8 at Re=500. 
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Fig. 2b Grid influence: Wall shear distribution along the right wall of the mother tube and 

Outer wall of the right daughter tube for the case AR=1.0 and θ=π/8 at Re=500. 

 

 

Fig. 3 Streamwise velocity contours (AR=1.0 and θ=π/8 at Re=500) given in the mother tube at a) inlet  and  b) 
0.1MD to bifurcation, and in the daughter tubes at  c) 0.3MD, d) 1MD,e) 2.5MD, and f) 5MD (outlet of Grid3) 

respectively. 
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Fig. 4 Pressure distributions along the centerlines of MT and RDT for AR=1.0 at Re=500. 

 

Fig. 5 Axial wall shear distributions along the right wall of MT and the outer wall of RDT for AR=1.0 at Re=500. 
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Fig. 6 Axial wall shear distributions along the inner wall of RDT for AR=1.0 at Re=500. 

 

Fig. 7 Axial wall shear distributions along the top wall of MT for AR=1.0 at Re=500. 
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Fig. 8 Pressure distributions along the centerlines of MT and RDT for θ=π/8 and AR=1.0. 

 

Fig. 9 Axial wall shear distributions along the right wall of MT and the outer wall of RDT for θ=π/8 and AR=1.3. 
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Fig. 10 Axial wall shear distributions along the inner wall of RDT for θ=π/8 and AR=1.3. 

 

Fig. 11 Pressure distributions along the centerlines of MT and RDT for θ=π/8 and Re = 500. 
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Fig. 12 Axial wall shear distributions along the right wall of MT and the outer wall of RDT for θ=π/8 and Re = 
1000. 

 

Fig. 13 Axial wall shear distributions along the top wall of MT for θ=π/8 at Re=1000. 
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Fig. 14 Streamwise velocity surfaces (backflow part), looking down into the left daughter tube at Re = 1000                    
a) AR = 1.3,  b) AR =1.6,  and c) AR = 2.0 (Grid3). 
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