骨のリモデリングの計算バイオメカニクス 階層的モデルとその応用

安達泰治,坪田健一,冨田佳宏 神戸大·工,理研

理研シンポジウム 「生体力学シミュレーション」

1999年7月1日,2日

Hierarchical Structure of Bone

Macro

10kU X200 100+m

Micro

Internal Structure of Trabeculae

Introduction: Trabecular Surface Remodeling

- Trabecular microstructure of cancellous bone
 - changing / maintained by remodeling, mechanical factors
- Adaptation to mechanical environment
 - regulated by Oc / Ob activities on trabecular surface
- Surface movement by cellular activities lead to
 - macroscopic changes of trabecular architecture

Introduction: Computational simulation

Theoretical models & Computational simulations

Macroscopic Phenomena Cowin76, Carter87, Huiskes87, Beaupre90, Weinans92 Microscopic Mechanism Cowin92, Sadegh93, Mullender94

- Microscopic resorption and formation (Parfitt84)
 Local mechanical signals play an important role (e.g. Guldberg97)
- Trabecular level mechanical stimulus
 - related to morphological changes of trabecular architecture

Macroscopic Model: Huiskes et al.

Internal Remodeling (Huiskes87)

 $\frac{d\rho}{dt} = C_I(S - S_0)$

External Remodeling :

$$\frac{dX}{dt} = C_E(S - S_0)$$

ρ: Apparent Density *X*: Coordinate of Surface Point *S*: Mechanical Stimulus *S*₀: Reference Value of *S C*₁,*C*_E: Remodeling Constant

Fig. Feedback Mechanism of Remodeling (Huiskes & Hollister, 1993)

Macroscopic Model and Simulation

Macroscopic Model: Cowin, Carter et al.

- Adaptive Elasticity (Cowin76)

$$\frac{de}{dt} = a(e) + A(e)_{ij}(\mathcal{E}_{ij} - \mathcal{E}^{0}_{ij})$$

where $e = \rho - \rho_0$

- Self Optimization Model (Carter87)

Remodeling under Multi Loads

Computational Biomechanics of Bone Remodeling

Purpose: basic understanding & application

- To understand mechanism of adaptive bone remodeling
- To predict remodeling, around bone-implant interface
- To design implant, screw …
- To apply in bone tissue engineering, design scaffold …
- Approaches:
 - Phenomenological modeling and simulation "Macro"
 - down toward mechanism at cellular level "Micro"

Macro- & Microscopic Viewpoints

Approaches: Model & Simulation

Lattice Continuum Model of Bone

- Mechanics and Remodeling
- Cosserat Continuum
- Hierarchy of structure in continuum
 - cf. Homogenization and localization method
- Trabecular Surface Remodeling
 - Microstructural changes
 - --> Macro structural and mechanical properties
 - Voxel finite element model

Lattice Continuum Model

Mechanics and Remodeling
 Macroscopic Constitutive Eq.

 $\mathbf{T} = \mathbf{E} \boldsymbol{\varepsilon}, \ \mathbf{E} = \mathbf{E}(\rho, \mathbf{H}, \mathbf{S}, \cdots)$

- Macro- Remodeling Rate Eq. $\mathbf{E} = f(\mathbf{T}, \boldsymbol{\epsilon}, \cdots)$

T, E S: Structure micro T^e, ϵ^e

- Micro- Remodeling Rate Eq.

$$\dot{\mathbf{E}} = f(\dot{\mathbf{S}}), \dot{\mathbf{S}} = f(\mathbf{T}^e, \boldsymbol{\varepsilon}^e, \cdots)$$

Trabecular Surface Remodeling

Remodeling at trabecular level: microscopic level

- Rate Equation: Microscopic
 - Approach to Cellular level mechanism
- Simulation: Microscopic
 - --> Structural changes in Macro
 - --> Change in Apparent Mechanical Properties

Rate of trabecular surface movement

 $\dot{M} = F(\Gamma)$

 Γ : microscopic mechanical stimulus

Application:

Computational Biomechanics of Bone Remodeling

- Evaluation and prediction of bone remodeling around artificial joint, implant, artificial joint, ...
- Design of implant, screw, joint considering remodeling
- Design of scaffold structure in tissue engineering
- Scaffold & new bone ingrowth
 - mechanical function and biochemical degradation

(Mosekilde 1990)

Vertebral Body with a Rod Screw

$$F_3 = 58.8$$
N
= $(F_1 + F_2)/10$

 $l_L = 1 \,\mathrm{mm}$ $\Gamma_l = -5, \ \Gamma_u = 4.0$

Remodeling: With a Rod Screw

Model around Rod Screw Interface

Remodeling around Rod Screw Interface

4th step

20th step

Shear: Case Ss

Compression: Case Sc

Application: Bone tissue engineering

(1) Digital Image

(3) Design of Scaffold

Low

Von Mises Stress in Scaffold Strain Energy Density in Tissue

Topology Optimization

Structural analysis of ScaffoldMechanical Bone Remodeling

(2) 3D Model of Bone, Screw and Scaffold

(4) SFF Manufacture Directly or by Casting

Manufactured Condyle with Scaffold

Rendering of CT Image

(Hollister et al., 1998)

Application: Design structure of scaffold

- as a load bearing construct
- compatible with cell ingrowth and migration
- as a transducer of mechanical signal to cells
- to consider transition between
 - degradation of scaffold
 - new bone formation and remodeling

Computational biomechanics in bone remodeling

Macro- and Micro- Hierarchy
 in Bone mechanics and remodeling
 Basic science --> Application