RIKEN Symposium

- Computational Biomechanics -

Simulation Study on Mechanical Adaptation in Cancellous Bone by Trabecular Surface Remodeling

> Taiji ADACHI, Ken-ichi TSUBOTA and Yoshihiro TOMITA

> > **Kobe University / RIKEN**

May 24-25, 2000, Suzuki Umetaro Hall, RIKEN

Bone Functional Adaptation by Remodeling

Mechanical Environment

Hierarchical Structure of Bone

Mechanical Stimuli Cellular Activities Formation / Resorption Structural Changes

Trabecular Surface Remodeling

- Trabecular microstructure of cancellous bone
 - changing / maintained by remodeling under mech. influence
- Adaptation to mechanical environment

 regulated by Oc / Ob activities on trabecular surface
- Surface movement by cellular activities lead to
 macroscopic changes of trabecular architecture

Computational Simulation for Bone Remodeling

Theoretical models & Computational simulations

Macroscopic Phenomena Cowin76, Carter87, Huiskes87, Beaupre90, Weinans92 Microscopic Mechanism Cowin92, Sadegh93, Mullender94

- Adaptive Elasticity (Cowin76)
- Self Optimization Model (Carter87)

Trabecular Level Remodeling

Trabecular Remodeling

- Microscopic resorption / formation by osteoclasts / osteoblasts on trabecular surface (e. g. Parfitt84)
- Local mechanical signals play an important role (e.g. Guldberg97)
- Trabecular level mechanical stimulus related to morphological changes of trabecular architecture

Simulation for Trabecular Surface Remodeling

- Remodeling Rate Equation
- Method of Pixel-based Simulation
- Computational Simulation for Proximal Femur

- A Remodeling Rate Equation: based on Uniform Stress Hypothesis as an optimality condition for remodeling equilibrium (Adachi98)
 - Nonuniformity in local stress distribution on trabecular surface as driving force of remodeling
 - Related to local morphological changes of trabecular architecture

A Remodeling Rate Equation

Stress nonuniformity $\Gamma = \ln(\sigma_c / \sigma_d)$

Representative stress $\sigma_d = \int_S w(l) \sigma_r dS / \int_S w(l) dS$ \rightarrow Driving force of remodeling

A Remodeling Rate Equation

 $\dot{M} = F(\Gamma)$ $= \begin{cases} \Gamma > 0 : Formation \\ \Gamma < 0 : Resorption \end{cases}$

Microstructural Finite Element Model

Trabecular Bone

- Microstructural voxel/pixel finite element models
- Resorption/formation by removing/adding elements
- Generated by using digital images, μCT

Remodeling Simulation

Large-Scale FE Pixel Model of Proximal Femur

Bone part: 0.67 Million ElementsPixel size: 70µm

4mm × 4mm region

Fabric ellipse

 $H_1 = 714 \mu m, H_2 = 713 \mu m$ $H_1/H_2 = 1.00$

*Model parameters (1) Threshold values: $\Gamma_u = 1.0$, $\Gamma_l = -2.0$ (2) Sensing distance: $l_L = 1.0$ mm (~14 pixels)

Trabecular Structural Changes

- Trabecular bone remodeling at 12th Step

One-legged stance

Abduction

* Boundary condition (Beaupré90)

Trabecular Structure & Mechanical Environment

- Region 1: Uniaxial Compression

- Region 2: Compression-Tension

Trabecular microstructure

Fabric ellipse

Apparent principal stress

Remodeling under Multiple Loading

Structural Changes under Multiple Loading

Structural Changes under Multiple Loading

* B.C.: Beaupré *et al.* (1990)

Comparison

At Microstructural Level

Trabecular microstructure for multiple loading condition

*Single loading condition: One-legged stance

Equivalent stress distribution

One-legged stance

Abduction

Adduction

Discussion and Conclusion

- Trabecular surface remodeling in cancellous bone
- Large-scale pixel FE model of proximal femur
- Trabeculae adapt to mechanical environment
- Direct evaluation of micro-macro relationships
- Insight into microscopic mechanism

Proposed simulation method using microstructural voxel FE models could be applicable to predict the trabecular remodeling

Future Works

3D remodeling simulation using digital-image based FE model (µCT)

Guldberg97

Comparison with experiment

Application to orthopaedic research area: Remodeling at bone-implant interface

