代替物の劣化吸収と新生骨の形成を考慮した 骨組織再生シミュレーション

安達 泰治,河野 雄二, 冨田 佳宏

神戸大学 工学部 機械工学科 adachi@mech.kobe-u.ac.jp

理研シンポジウム "生体力学シミュレーション研究"

2001年6月4日(月),5日(火) 理化学研究所・鈴木梅太郎記念ホール

Introduction: Tissue Engineering

(5), (6)

Tissue Regeneration

- - (1) Isolated Cells or Cell Substitutes
 - (2) Biodegradable Polymer Scaffold
 - (3) Cells Placed on or within Matrices (Scaffold)
 - (4) In Vitro Tissue Culture
 - (5) In Vivo Implantation
 - (6) Degradation of Scaffold, Formation of New Tissue

Regeneration: Morphology & Function

Bone Regeneration using Scaffold

- (1) Defect in Bone
- (2) Scaffold Replacement
- (3) Scaffold Degradation & New Bone Formation
- (4) Regenerated

In Vivo Mandible Defect Model

µCT Image of Scaffold

Structural Design of Scaffold

Functions from Mechanical/Biological Viewpoints:

- compatible with cell <u>ingrowth and migration</u>
- for <u>transportation</u> and <u>diffusion</u> of bioactive factors
- as a <u>transducer</u> of mechanical signal to cells

Present study focuses on:

• as a mechanical <u>load bearing construct</u>

• to consider <u>transition</u> between

<u>degradation</u> of scaffold / new bone <u>formation</u>

Purpose

Bone-Scaffold Structure in Regeneration Process and Final Replaced Bone

"Design of Scaffold Structure"

- 1. Simulation of Bone Regeneration
- 2. Change in Mechanical Integrity of Bone-Scaffold System
- 3. Determine Optimum Scaffold Structure

Simulation Model of Bone-Scaffold System

Biodegradable Scaffold for Bone

- Material: Poly Lactic Acid (PLA) Poly Glycolic Acid (PGA)

- **Properties**: Biodegradable Material Biocompatible Material Porous Microstructure

Size: 12 × 30 × 6.5 mm Apparent Density: 0.085 Mass: 200mg (Brekke, 1996)

Mechanical Stimuli for Osteoblasts

Biodegradable Polymers

Cell/Scaffold Integration

Paul Krebsbach

/ Scott J. Hollister at UM

3D Tissue Ingrowth Architecture

Courtesy Ralph Mueller

3D Scaffold Structure

Bone Follows pore structure <u>3D Bone Structure</u>

9 weeks in minipig mandible – shows tissue will follow design / Scott J. Hollister at UM

New Bone Ingrowth and Formation

Simulation Model of Bone-Scaffold System

Compressed by constant load

 $E_S = 20$ GPa, $v_S = 0.3$ $E_B = 20$ GPa, $v_B = 0.3$

 50×50 pixels

Simulation of Bone Regeneration Process

Design Valuables and Objective Function

- Initial Scaffold Shape
 - W : width
 - θ : angle

- Objective Function

$$\boldsymbol{\Phi}_{\boldsymbol{p}} = \int_{0}^{T} \frac{|U(t) - U_{\boldsymbol{b}}|}{T} dt$$

Strain Energy: UU(t) : **Bone-Scaffold System** U_b : **Ideal Bone**

Time at Equilibrium: T

Objective Functions Depending of Initial Shape

Change in Structural Properties

Minimum Objective Function at Initial

3D Simulation of Bone Regeneration

Summary

- Design of Scaffold Degradation

 Shape (ex. W, d, θ):
 Microstructure / Macro shape / size
 w/ constraint depending on objective function
 - Material: E = Stiffness
 α = Degradation rate
- Bone Formation (bio+mech)
 - Ingrowth rate (bulk effect)
 - Formation rate
 - Remodeling rate

1. Extension to a complex structure with large-scale

2. Rate equations of bone ingrowth and formation

3. Fabrication ... and ... comparison with experiment.