Modeling Technique for Cardiovascular Biomechanics Simulation and Integrated System for Risk Estimation

Tomoaki Hayasaka
Jun Funabiki
Masaaki Matsumoto
Takami Yamaguchi

The Institute of Chemical and Physical Research (RIKEN)
 Mitsubishi Research Institute
 A Graduate School of Engineering, Tohoku University

For Clinical Application

Computational Biomechanics Simulation

Requires Interactive Modeling for Realistic Models

- Low S/N Ratio
- Artifacts (Motion, Aliasing, Chemical Shift, etc.)
- Relies on Extensive Use of Computer Resources
 - Processor Speed
 - # Of Processors
 - Amount of Memory
 - Memory Bandwidth
 - Communication Speed
 - etc.

For So-Called Tailor Made Medicine

Turn Around Time Must Be Shortened.

Bottlenecks are

ModelingComputation

CREAM

Computational Risk Estimation And Management

for Cardiovascular Medicine

Goals

Prediction Based Risk Management
 Risk Estimation in Minutes
 Comprehensive Set of Tools
 Integrated UI

Quick Risk Estimation

Keys for Quick Risk Estimation:

"Do Not Model" "Do Not Compute"

Instead, Utilize Database of Images, Pre-Built Models, Computational Results & Clinical Outcomes

A Summary Level Use-Case

When New Patient Comes

Acquire the Image of the Patient Using MRI etc.

- Find Similar Image and Associated Data from the DB
- Evaluate Risks Using Pre-Computed Results and Related Clinical Outcomes

Architecture

Finding Similar Image

Direct Image Comparison is Inappropriate

- Inefficient
- Error Prone

Novel Technique Based on Reduced Information

- Efficient
- Robust
- Geometrical Information (Bifurcation Point, Radius)
- Fitted to Centerline Based Mesh Generation

Topology Estimation

Segment
Skeletonize
Trace Edges

A New Matching Algorithm

Initial Model Construction

Previously Developed "malmodeler" with Enhancements of Centerline Based Grid Generation

CFD Analysis Using Over Set Mesh

Implementation

- Linux
 g++ (C++)
- MICO (CORBA)
- libxml (XML)
- DCMTK (DICOM Toolkit)
- Postgresql (RDBMS)
- FLTK and gtk-- (GUI)
- OpenGL
- Sun Grid Engine

Components and Objects 1/2

Components and Objects 2/2

App

- Business objects (patient, image, etc.)
- DB access
- Session management
- Transaction management

FE
Individual UI programs
Screen transition
Image handling
Topology handling

Summary

Features
 DB of Image, Model, Results, Clinical Outcomes
 Quick Risk Estimation by Pre-Computation

Status

- Design Finished
- Fundamental Components Implemented
 - Topology Estimation
 - Matching
 - Centerline Based Modeling
 - CFD Using Over Set Mesh

Furture Works

Finish UI

Acknowledgment

This research was supported by ACT-JST ("Research Development for Applying Advanced Computational Science and Technology" of Japan Science and Technology Corporation) 2001-2004 "CREAM -Computational Risk Estimation And Management - in Cardiovascular Clinical Medicine" (Principal Researcher: Takami Yamaguchi)