A FINITE ELEMENT MODEL FOR DETERMINING THE EFFECTS OF BLOOD FLOW ON THE FINGER TEMPERATURE DISTRIBUTION

Ying HE, Minoru SHIRAZAKI, and Ryutaro HIMENO

Computer and Information Division The Institute of Physical and Chemical Research (RIKEN)

The Physiological Characteristics of the Human Finger

- The vessel network is well developed
- Compared to the other parts in human body, there are fewer muscles
- When human body receives an inside and outside stimulus, the physiological behavior in the hand will vary obviously.

The Mechanical Characteristics of the Human Finger

- The human finger has high sensory and motor capacities
- Convey information about (a) mechanical, (b) thermal and (c) tissue damaging events occurring on the skin of the hand

Some Physiological Phenomena and Diseases Related to Finger Skin Temperature

• After cigarette smoking, the peripheral circulation becomes worse and the skin temperature decreases. (Cleophas,T.J.M, et al. 1982, Bornmyr, S. et al. 1991)

- While in the state of stress or fatigue, the finger skin temperature decreases (Nketia,P. and Reisman,S. 1997).
- Thermoregulation abilities for men and women are different (Cooke,J.P. et al. 1990)
- Raynaud's syndrome

Research Objective

• What is the mechanism of thermoregulation and circulation diseases in periphery.

• Numerous thermal models have been presented, few models focused on the relationship between haemodynamic changes and heat transfer.

The possible applications

Developing human sensory sensor used in the areas like:

- Health management for monitoring physiological parameters
- Safe driving
- Family robot and prosthetic hands

The peripheral circulation system in the hand (cited from Angiology and Taschenatlas der Anatomie)

1. Bone 2. Tendon 3. Dermis 4. Epidermis 5. Artery

Two-dimensional thermal model of the middle finger

The geometric model of the finger in longitudinal direction

Blood flow:

Laminar flow

Blood vessels:

rigid tube, the tube elasticity is not considered.

Governing Equations in Blood Vessels

• Navier-Stokes equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{\mathrm{Re}} \mathbf{u}$$

• Continuity equation

 $\nabla \cdot \mathbf{u} = 0$

• Energy equation

$$\frac{\partial \mathbf{T}}{\partial t} + (\mathbf{u} \cdot \nabla) = \frac{1}{Pe} \quad T$$

u:	velocity
p:	pressure
T:	temperature
Re:	Reynolds number
Pe:	Peclet number

Energy Equation in tissues

$$\frac{\partial \mathbf{T}}{\partial t} = \frac{1}{Pe_t} \quad \mathbf{T} + \frac{\psi}{Pe_b} W(1 - \mathbf{T}) + \frac{\psi}{Pe_b} q_{met}$$

u:velocityT:temperature $T = \frac{T^* - T_{\infty}^*}{T_a^* - T_{\infty}^*}$ Pe:Peclet number $Pe_t = \frac{U_{\infty}D}{\alpha_t}$ W:dimensionless volumetric blood perfusion rate $W = \frac{(\omega_b \rho_b c_b)D^2}{\lambda_b}$ ψ :dimensionless ratio of blood to tissue thermal inertia $\psi = \frac{\rho_b c_b}{\lambda_b}$ $q_{met:}$ dimensionless volumetric heat generation rate $q_{met} = \frac{q_{met}^*D^2}{(T_a^* - T_{\infty}^*)\lambda_b}$ subscriptst:tissue

b: blood

Characteristics and limitations

- The Governing equations of fluid are suitable for the whole domain (fluid and solid part)
- No necessary to consider the boundary conditions between fluid and solid part
- Can deal with the problem with different thermal properties in different place
- Be applicable to the thermo-fluid problem in low Reynolds number
- not easy for mesh generation
- The computational time is increased

Boundary conditions

- 1. Inlet part: *u*=1, *v*=0, *T*=1
- 2. Outlet part: p=p_{out}
- 3 . Solid tissue (inside): u = v = 0
- 4. Cross section (solid): u=v=0

$$T = T_1(y,t) \text{ or } T = T_1(y)$$

- 5. Skin surface: Temperature
 - *a*. In the air:
- Bi: Biot number

$$\begin{aligned} u = v = 0\\ \frac{\partial T}{\partial n}\Big|_{\Gamma} = BiT\Big|_{\Gamma} + \frac{h_{ra}D}{\lambda_s}\Big| + E_{diff}\end{aligned}$$

Table 1. Thermophysical properties and bloodperfusion rate of tissues

	bone	tendon	skin	blood
$\rho(kg/m^3)$	1418	1270	1200	1100
c(J/kgK)	2094	3768	3391	3300
$\lambda(W/mK)$	2.21	0.35	0.37	0.50
ω (ml/ml/min)	2.0/100	3.43/100	24/100	_
$\mu \times 10^{6} (N.s/m^{2})$	_	_	_	2085
$q_{met}(W/m^3)$	352	368	273	_

Arterial temperature	37°C
Outlet pressure	20 mmHg
Ambient temperature	19°C
(by infra-red thermography)	
Arterial blood velocity (by	6, 10, 20cm/s
bi-directional Doppler	
DVM-4300)	
Convective heat transfer	4W/m ² K
coefficient	
Radiative heat transfer coefficient	$ 4.7W/m^2K $

A part of finite element grid network of the modeled finger in longitudinal direction

elements: 19234

time increment:

2 × 10⁻⁵

 2×10^{-3} (only in the energy equation)

a. Velocity distribution b. Isotherm contours of model-A finger in longitudinal direction for different blood velocity

Temperature profile in a cross section of a finger for different blood flow conditions

a. The comparison of the measured skin temperature and the computed skin temperature b. The thermograph of a finger (ambient temperature $T_{amb}=19^{\circ}C$)

Isotherm contour and temperature profile of model-B finger

Concluding Remarks

• A FE thermo-fluid model is presented to investigate the effect of blood flow on the temperature distribution in a finger.

• In indoor environment, with the velocity in larger blood vessels increasing, the skin temperature increases. However, the variations of the skin temperatures in different blood velocities are quite small .

• The comparison of the results of model A and B suggest that the heat transport in the superficial vein is important.

Discussion

- The flexibility of the blood vessel, the waveform velocity, and the transmural pressure may be considered in examining the relationship between the flow rate and temperature in the peripheral circulation.
- In order to simulate the thermal characteristic of human body in the dynamic state, the coupling of one-dimensional elastic model and FE thermal model is expected.