Rheological and biochemical analyses on blood coagulation
Discovery of a new pathway under stagnant flow conditions ~

Computer and Information Division, RIKEN Hiroki Iwata Supramolecular Science Laboratory, RIKEN Makoto Kaibara Biomolecular Characterization Division, RIKEN Naoshi Dohmae Koji Takio

Activation of coagulation factor IX on erythrocyte membrane

Time of onset of coagulation of blood sample

Blood sample	Cell number (cells/ µ l)	Coagulation time (min)
Whole blood		31.2 ± 5.5
PFP	Platelets < 100	not coagulated
PRP	Platelets $< 1-40 \ge 10^4$ (Leukocytes 1-6.4 $\ge 10^3$)	54.3 ± 14.3
PFP + Granulocytes	Granulocytes 0.2 - 3.5×10^3	58.3 ± 6.3
PFP + Erythrocytes	Erythrocytes $< 5 \times 10^5$ 2 x 10 ⁶ > 4 x 10 ⁶	not coagulated 64.6 ± 28.8 30.0 ± 2.9

S.Kawakami, et al.: Biorheology, 32(5): 521-36, 1995

Coagulation of coagulation factor-deficient PFP supplemented with erythrocytes

PFP sample	Coagulation time (min)	
PFP (normal)	29.9 ± 2.4	
Factor VII-, XI or XII-deficient	28.1 ± 3.8	
Factor IX-, VIII- or X-deficient	not coagulated	

S.Kawakami, et al.: Biorheology, 32(5): 521-36, 1995

SDS-PAGE analysis of activation of coagulation factors by erythrocyte membrane

Purification Procedure

Affinity chromatography on heparin sepharose column

N-Terminal amino acid sequence of factor IX-activating enzyme on erythrocyte membrane

Amino acid sequence of human leukocyte elastase

<u>ivggrrarph awpfmvsl</u>ql rgghfcgatl iapnfvmsaa hcvanvnvra vrvvlgahnl
 srreptrqvf avqrifengy dpvnllndiv ilqlngsati nanvqvaqlp aqgrrlgngv
 qclamgwgll grnrgiasvl qelnvtvvts lcrrsnvctl vrgrqagvcf gdsgsplvcn
 glihgiasfv rggcasglyp dafapvaqfv nwidsiix

Underlined: the observed amino acid sequence

Sites of Factor IX cleaved by the extract

Hematocrit (%)

Effect of hematocrit on activation of factor IX

Effect of flow shear rate on coagulation time

Effect of flow shear rate on activation of factor IX

Coagulation time and enzymatic activity of erythrocyte from different donors

oagulation reaction

Observation of erythrocytes labeled with elastase-specific fluorogenic substrate

Conclusion

 Factor IX is activated by enzyme on erythrocyte membrane. The enzymes are homologous to leukocyte elastase, The enzyme activates Factor IX by cleaving several bonds which sites are close to the bonds cleaved by Factor XIa.

2. Identification of Factor IX activating enzyme on erythrocyte membrane could provide a frame work for defining roles in cardiovascular coagulation and for refining strategies in pharmaceutical development.