心血管系1次元数値シミュレーションモデルの高精度化 The establishment of high－precise one－dimensional numerical simulation model of blood flow for the cardiovascular system．

○北脇 知己＊＊，清水 優史「，姫野 龍太郎＂
Tomoki KITAWAKI＊，\＃，Masashi SHIMIZU ${ }^{\dagger}$ ，Ryutaro HIMENO\＃
＊岡山大，${ }^{\text {東工大，＂理研 }}$
＊Okayama University Medical School，
†Tokyo Institute of Technology，
\＃Advanced Computing Center，RIKEN

Outline

To make a computational model of whole body circulatory system

Objective

1-D whole body model

Quantitative model

Influence of some issues

- Vessel structure (taper, branch, etc.)
- Unsteadiness of blood flow
- Behavior of vessel wall
- Boundary conditions
- Non-newtonian characteristics of blood

Aim:

To establish the high-precise One-Dimensional numerical simulation model

Models:

-Branch angle model
-Unsteady viscous model
-Generalized Viscoelastic Model

1: Branch angle

Treatment at branching points

Tube 2 (child)

$$
\begin{array}{r}
\frac{\mathrm{dQ}^{1}}{\mathrm{dt}}=\left\{\frac{\mathrm{AA}^{1}}{\mathrm{~A}^{1}+\mathrm{A}}\left(\frac{\left(\mathrm{Q}^{1}\right)^{2}}{\left(\mathrm{~A}^{1}+\mathrm{A}^{1}\right) / 2}-\frac{\left(\mathrm{Q}^{2}\right)^{2}}{\mathrm{AA}^{2}} \cos \theta_{2}-\frac{\left(\mathrm{Q}^{3}\right)^{2}}{\mathrm{AA}^{3}} \cos \theta_{3}\right)+\left(\mathrm{P}^{1}-\mathrm{P}\right) \mathrm{AA}^{1} / \rho\right\} / \Delta \mathrm{x} \\
\mathrm{AA}^{1}=\left(\frac{2 \mathrm{~A}^{1} \mathrm{k}^{1}}{\mathrm{~A}^{1} \mathrm{k}^{1}+\mathrm{A}^{2} \mathrm{k}^{2}+\mathrm{A}^{3} \mathrm{k}^{3}} A+\mathrm{A}^{1}\right) / 2
\end{array}
$$

cross-sectional area ratio of the tubes $: \frac{\sum A_{\text {ouput }}}{A_{\text {input }}}$

Relationship between the reflected wave and the tube cross-sectional ratio

Discussion and Conclusion

- 1-D computational model of the artery systems
- investigation the bifurcation angle dependence
- a quantitative analysis of the reflected wave
- The angle effect
- the reflected wave at bifurcation point was observed
- the angle dependence was recognized in large and medium arteries
- Combination of angle and cross-sectional ratio
- peculiar feature of reflected wave

2: Unsteadiness of blood flow 3: Behavior of the vessel wall

One-Dimensional Numerical Model

- Continuity equation
$\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0$
- Equation of momentum conservation

$\left\{\begin{array}{l}\text { quasi-steady flow model } \\ f_{t}=8 \pi \nu V(t) \\ \text { approximated unsteady model } \\ f_{t}=c_{v} 8 \pi v \frac{Q(t)}{A(t)}+\left(c_{u}-1\right) \frac{\partial Q}{\partial t}\end{array}\right.$
accurate unsteady model

$$
f_{t}=4 \pi v\left\{2 V(t)+\int_{0}^{t} W(t-u) \frac{\partial V(u)}{\partial t} d u\right\}
$$

- Deformation law of the tube

$$
p-p_{0}=\frac{1}{C s}\left(A-A_{0}\right)+f\left(\frac{\partial A}{\partial t}\right) \quad\left\{\begin{array}{c}
\text { Elastic model } \\
f=0 \\
\text { Voigt model } \\
f=\frac{h E_{i}}{2 R A_{0}} \frac{\partial A(u)}{\partial t}
\end{array}\right.
$$

viscoelasticity of tube wall
Generalized Viscoelastic Model

$$
f=\frac{h}{2 R A_{0}} \int_{0}^{t} \sum_{i=1}^{n} E_{i} e^{-(t-u) / \tau_{i}} \frac{\partial A(u)}{\partial t} d u
$$

Calculation methods of Generalized Viscoelastic Model

■ Unsteady Viscous term : Kagawa et al.(1983)

$$
\begin{aligned}
& f_{t}=4 \pi v\left\{2 V(t)+\int_{0}^{t} W(t-u) \frac{\partial V(u)}{\partial t} d u\right\} \\
& W(t)=\sum_{i=0}^{k} m_{i} e^{-n_{i}(u) / R^{2}} \quad y_{i}=\int_{0}^{t} m_{i} e^{-n_{i}\left(v / R^{2}\right)(t-u)} \frac{\partial V(u)}{\partial t} d u \\
& f_{t}(t)=4 \pi v\left\{2 V(t)+\sum_{i=0}^{k} y_{i}(t)\right\} \quad \begin{cases}y_{i}(t)=0 \\
y_{i}(t+\Delta t)=e^{-n_{i}(v \Delta t) / R^{2}} y_{i}(t)+m_{i} e^{-n_{i}(v \Delta t / 2) R^{2}}\{V(t+\Delta t)-V(t)\} & (t>0)\end{cases}
\end{aligned}
$$

- Viscoelasticity of the tube

$$
\begin{aligned}
& f=\frac{h}{2 R A_{0}} \int_{0}^{t} \sum_{i=1}^{n} E_{i} e^{-(t-u) / \tau_{i}} \frac{\partial A(u)}{\partial t} d u \\
& f=\frac{\prod_{0}}{2 R A_{0}} \sum_{i=1}^{n} z_{i}(t) \quad W v(t)=\sum_{i=1}^{n} E_{i} e^{-t / \tau_{i}} \quad z_{i}=\int_{0}^{t} E_{i} e^{-(t-u) / \tau_{i}} \frac{\partial A(u)}{\partial t} d u \\
& \begin{cases}z_{i}(t)=0 \\
z_{i}(t+\Delta t)=e^{-\Delta \tau / \tau_{i}} z_{i}(t)+E_{i} e^{-(\Delta \tau / 2) / \tau_{i}}\{A(t+\Delta t)-A(t)\} & (t>0)\end{cases}
\end{aligned}
$$

'04/03/24

Experimental apparatus

Experimental result

'04/03/24

Determination of tube viscoelastic parameter

(a) real part of viscoelastic modulus

(b) loss tangent

A computational method

- Computational scheme
- Finite Difference Method
- Space : 4th order central difference
- Time: Jemson-Baker four stage Runge-Kutta
- Boundary conditions
- input:

Flow volume

- output:

No output flow

- Initial state
- no flow in the tube

Cross-sectional area (tube diameter)	$0.612 \times 10^{-4} \mathrm{~m}^{2}$ $(8.83 \mathrm{~mm})$
Input peak pressure	1.5 kPa
peak flow rate	$(0.13 \mathrm{~m} / \mathrm{s})$
Max Reynolds number (Re)	1150
Static Young module $\left(E_{0}\right)$	$3.05(\mathrm{MPa})$
(wave propagation velocity)	$(21 \mathrm{~m} / \mathrm{s})$
Length of the tube	4.0 m
(Δx)	$(0.05 \mathrm{~m})$
Total elapsed time	4.0 s
(Δt)	$(0.001 \mathrm{~s})$
Courant Number $(=\mathrm{c} \triangle \mathrm{t} / \triangle \mathrm{x})$	0.42

Computational parameters

Comparison between measurement and simulation

 Generalized Viscoelastic Model

Comparison between measurement and simulation Voigt Model

Conclusion

■ Establishment the treatment of unsteady viscous term and vessel wall viscoelastic term

- Unsteady viscous model and Generalized Viscoelastic Model can be applied to the deformable tube
- New calculation method is established.
- Good agreement with measurement and simulation involving both unsteadiness and visco-elasticity of tube

Future works

- Establishment of the whole body 1-D model
- Decision of parameters: viscoelasticity of vessel wall
- Apply to the in vivo phenomenon analysis
- Model combination
- Tree-structured 1-D model and 3-D model
- Verification and validation
- comparison with 3-D model, experimental results

