心血管系1次元数値シミュレーションモデルの高精度化

The establishment of high-precise one-dimensional numerical simulation model of blood flow for the cardiovascular system.

北脇 知己*,#、清水 優史*、姫野 龍太郎#

Tomoki KITAWAKI*,#, Masashi SHIMIZU[†], Ryutaro HIMENO[#]

*岡山大、*東工大、#理研

*Okayama University Medical School, †Tokyo Institute of Technology, #Advanced Computing Center, RIKEN

Outline

Objective

1-D whole body model

Quantitative model

'04/03/24

Influence of some issues

- Vessel structure (taper, <u>branch</u>, etc.)
- Unsteadiness of blood flow
- Behavior of vessel wall
- Boundary conditions
- Non-newtonian characteristics of blood

Aim:

To establish the high-precise One-Dimensional numerical simulation model

Models:

- -Branch angle model
- -Unsteady viscous model
- -Generalized Viscoelastic Model

1: Branch angle

Treatment at branching points Tube 2 (child) Q^{2} A^2 P^2 Tube 1 (parent) x_2 axis \mathbf{Q}^1 A¹' P¹' \mathbf{A}^1 \mathbf{P}^1 A P \mathbf{I}_{1} axis x₃ axis $A^3 P^3$ Tube 3 (child) $\frac{\mathrm{d}Q^{1}}{\mathrm{d}t} = \{\frac{\mathrm{A}A^{1}}{\mathrm{A}^{1} + \mathrm{A}} (\frac{(Q^{1})^{2}}{(\mathrm{A}^{1} + \mathrm{A}^{1})/2} - \frac{(Q^{2})^{2}}{\mathrm{A}A^{2}} \cos \theta_{2} - \frac{(Q^{3})^{2}}{\mathrm{A}A^{3}} \cos \theta_{3}) + (\mathrm{P}^{1} - \mathrm{P})\mathrm{A}A^{1}/\rho\}/\Delta x$ $\mathrm{A}A^{1} = (\frac{2\mathrm{A}^{1}\mathrm{k}^{1}}{\mathrm{A}^{1}\mathrm{k}^{1} + \mathrm{A}^{2}\mathrm{k}^{2} + \mathrm{A}^{3}\mathrm{k}^{3}} \mathrm{A} + \mathrm{A}^{1})/2$ cross-sectional area ratio of the tubes : $\sum A_{output}$ '04/03/24

Relationship between the reflected wave and the tube cross-sectional ratio

Discussion and Conclusion

I-D computational model of the artery systems

- investigation the bifurcation angle dependence
- a quantitative analysis of the reflected wave
- The angle effect
 - the reflected wave at bifurcation point was observed
 - the angle dependence was recognized in large and medium arteries
- Combination of angle and cross-sectional ratio
 - peculiar feature of reflected wave

2: Unsteadiness of blood flow3: Behavior of the vessel wall

One-Dimensional Numerical Model

- Continuity equation
 - $\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$

Equation of momentum conservation

Calculation methods of Generalized Viscoelastic Model

■ Unsteady Viscous term : Kagawa et al.(1983)

Viscoelasticity of the tube

$$f = \frac{h}{2RA_0} \int_0^t \sum_{i=1}^n E_i e^{-(t-u)/\tau_i} \frac{\partial A(u)}{\partial t} du$$

$$\int_{i=1}^n Wv(t) = \sum_{i=1}^n E_i e^{-t/\tau_i} \qquad z_i = \int_0^t E_i e^{-(t-u)/\tau_i} \frac{\partial A(u)}{\partial t} du$$

$$f = \frac{h}{2RA_0} \sum_{i=1}^n z_i(t) \qquad \begin{cases} z_i(t) = 0 \qquad (t=0) \\ z_i(t+\Delta t) = e^{-\Delta \tau/\tau_i} z_i(t) + E_i e^{-(\Delta \tau/2)/\tau_i} \{A(t+\Delta t) - A(t)\} \ (t>0) \end{cases}$$

Experimental apparatus

Experimental result

Determination of tube viscoelastic parameter

A computational method

Computational scheme

- Finite Difference Method
- Space : 4th order central difference
- Time : Jemson-Baker four stage Runge-Kutta

Boundary conditions

- input:Flow volume
- output: No output flow
- Initial state
 - no flow in the tube

Cross-sectional area	$0.612 \times 10^{-4} \mathrm{m}^2$
(tube diameter)	(8.83 mm)
Input peak pressure	1.5 kPa
peak flow rate	(0.13 m/s)
Max Reynolds number (Re)	1150
Static Young module (E_{θ})	3.05 (MPa)
(wave propagation velocity)	(21 m/s)
Length of the tube	4.0 m
(Δx)	(0.05 m)
Total elapsed time	4.0 s
(Δt)	(0.001 s)
Courant Number (=c t/ x)	0.42

Computational parameters

Comparison between measurement and simulation Generalized Viscoelastic Model

Comparison between measurement and simulation Voigt Model

Conclusion

- Establishment the treatment of unsteady viscous term and vessel wall viscoelastic term
 - Unsteady viscous model and Generalized Viscoelastic
 Model can be applied to the deformable tube
 - New calculation method is established.
 - Good agreement with measurement and simulation involving both <u>unsteadiness</u> and <u>visco-elasticity of tube</u>

Future works

- Establishment of the whole body 1-D model
 - Decision of parameters: viscoelasticity of vessel wall
 - Apply to the *in vivo* phenomenon analysis
- Model combination
 - Tree-structured 1-D model and 3-D model
- Verification and validation
 - comparison with 3-D model, experimental results