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Outline

To make a computational model of whole body circulatory system

3-D model:
・realistic 
・3D, pulsatile flow fields 
・complicated and difficult

1-D model:
・idealized
・wave propagation
・feasible

Modify at junction point

Boundary conditions for 3-D model
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Objective
1-D whole body model Influence of some issues 

– Vessel structure (taper, branch, etc.)
– Unsteadiness of blood flow
– Behavior of vessel wall
– Boundary conditions
– Non-newtonian characteristics of blood

Quantitative model

Aim: 
To establish the high-precise One-Dimensional 
numerical simulation model

Models:
–Branch angle model
–Unsteady viscous model
–Generalized Viscoelastic Model
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1: Branch angle
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Treatment at branching points
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Fig. 9: Small tube
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Fig. 10: Medium tube
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Fig. 11: Large tube
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Relationship between the reflected wave and the 
tube cross-sectional ratio
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Discussion and Conclusion

1-D computational model of the artery systems
– investigation the bifurcation angle dependence
– a quantitative analysis of the reflected wave

The angle effect
– the reflected wave at bifurcation point was observed 
– the angle dependence was recognized in large and 

medium arteries 
Combination of angle and cross-sectional ratio
– peculiar feature of reflected wave



'04/03/24

2: Unsteadiness of blood flow
3: Behavior of the vessel wall
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One-Dimensional Numerical Model 
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Calculation methods of Generalized Viscoelastic Model

Unsteady Viscous term : Kagawa et al.(1983)
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Experimental apparatus

P1 P2 P3 P6P4 P5

4m silicone tube 
Flow meter

Pressure sensors

(every 0.7m)

Water tankpiston pump

Valve

0.5mm

9mm
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Experimental result
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Determination of tube viscoelastic parameter
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A computational method

Computational scheme
– Finite Difference Method
– Space : 4th order central 

difference
– Time  : Jemson-Baker four 

stage Runge-Kutta

Boundary conditions
– input: 

Flow volume
– output:

No output flow

Initial state
– no flow in the tube

Cross-sectional area
(tube diameter)

0.612×10-4 m2

(8.83 mm)
Input peak pressure
 peak flow rate

1.5 kPa
(0.13 m/s)

Max Reynolds number (Re) 1150

Static Young module (E0)
(wave propagation velocity)

3.05 (MPa)
(21 m/s)

Length of the tube
   (∆x)

4.0 m
(0.05 m)

Total elapsed time
   (∆t)

4.0 s
(0.001 s)

Courant Number (=c△t/△x) 0.42

Computational parameters
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Comparison between measurement and simulation
Generalized Viscoelastic Model

0.2s

4
.0
kP
a

0m

0.7m

1.4m

2.1m

2.8m

3.5m

Experiment: 
Calculation: 



'04/03/24

Comparison between measurement and simulation
Voigt Model
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Conclusion

Establishment the treatment of unsteady viscous term 
and vessel wall viscoelastic term

– Unsteady viscous model and Generalized Viscoelastic 
Model can be applied to the deformable tube

– New calculation method is established.

– Good agreement with measurement and simulation

involving both unsteadiness and visco-elasticity of tube
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Future works

Establishment of the whole body 1-D model
– Decision of parameters: viscoelasticity of vessel wall 
– Apply to the in vivo phenomenon analysis 

Model combination
– Tree-structured 1-D model and 3-D model

Verification and validation
– comparison with 3-D model, experimental results


