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Abstract. A blood flow analysis based on the medical image data obtained by
magnetic-resonance imaging (MRI) and computed tomography (CT) is usually done
by the finite element method or finite volume method in a boundary-fitted coordi-
nate (BFC) system. However, considerable time and effort is sometimes necessary
to make a model of the blood vessels from the actual image data. We propose a new
computational fluid dynamic method in this paper to solve the time and effort prob-
lem. We paid attention to the orthogonality of the pixel or voxel data obtained from
the image information, and directly translated the image data into the Cartesian co-
ordinate system by using the fractional volume of fluid (VOF) method. The flow was
computed by using a non-staggered finite difference method, in which the boundary
conditions were treated by the neighboring point local collocation (NPLC) method.
We produced numerical results for the flow in a two-dimensional stenosed blood
vessel model. A comparison with other reliable results shows that the proposed
method can reasonably predict the complicated vortical flow in a blood vessel. The
numerical result for the blood vessel model with a moving boundary is also pre-
sented.

1. Introduction

The blood vessels in the circulatory system create variations in the blood flow because the sys-
tem has a very complex geometrical structure, for example, sharp curvature, torsion, stenosis
and aneurysm. Moreover the variation in this flow is made more unstable and complicated
due to the characteristic beating, and the blood vessels may consequently be exposed to strong
shear stress by this influence. These haemodynamic characteristics make it difficult to under-
stand the detailed flow fields with application to wall shear stress (WSS), a major factor in
the onset, development and outcome of arteriosclerosis (Fry et al. [1], Caro [2], Ku et al. [3]).
However, it is very important to check the geometrical vascular influence for clinical purposes.
We propose in this paper a new method which makes use of the orthogonality of image data
(pixel and voxel information) originating from magnetic-resonance imaging (MRI) and com-
puted tomography (CT) as a method to achieve this. The boundaries of the object can be



described by the fractional volume of fluid (VOF) method introduced by Hirt et al. [4] that
is defined from the color information of each pixel or voxel obtained from the image. The
computational domain can then be discretized simply in the Cartesian coordinate system. The
pressure conditions at the boundary stencils are defined by using the Neumann conditions
combined with the governing equations. The flow is computed by using the non-staggered
finite difference method of Nishida [5], in which the boundary conditions are treated by the
neighboring point local collocation (NPLC) method of Nakano et al. [6, 7].

A detailed description of the method is next given, and the results of two pulsatile flows in
a two-dimensional stenosed blood vessel model are presented. A comparison with the reliable
results of Liu et al. [8, 9] will show that the present method can reasonably predict the compli-
cated vortical flow in a blood vessel. The numerical result for the flow in a blood vessel with
a moving boundary is presented as the application.

2. Definition of the geometric model and incoming flow

Consider the following two-dimensional stenosed channel model [8, 9, 10] depicted in Fig. 1.
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Fig. 1 Computational stenosis model

The upper wall can be described by the following functions:

F(x) = 1 (x1 < x < x2),
F(x) = 1−0.5ε {1+ tanhα(x− xa)} (x2 ≤ x ≤ x3),
F(x) = 1− ε (x3 < x < x4),
F(x) = 1−0.5ε {1− tanhα(x− xb)} (x4 ≤ x ≤ x5),
F(x) = 1 (x5 < x < x6),

where

xa = (x2 + x3)/2 and xb = (x4 + x5)/2,

α is the slope parameter, xi (i = 1, . . . ,6) are constants, and ε is the height of the stenoses. We
set α = 4.14, and 0.1 ≤ ε ≤ 0.6. At inlet, the waveforms of two pulsatile flows with a mean
velocity of U0 as shown in Fig. 1 are defined as follows:

U0(t) =




0.5(1− cos(2πt)) (Sinusoidal),

0.251+0.290(cosϕ +0.97cos2ϕ +0.47cos3ϕ +0.14cos4ϕ)
(Non-sinusoidal),

where ϕ = 2πt −0.14142. Points a, b, c, d, e and f in Fig. 2 denote the points where ∂U0/∂ t
and ∂ 2U0/∂ t2 = 0.



Fig. 2 Graph of incoming flows

3. Determination of the boundary from voxel information

The color information of each voxel based on MRI images can be described by voxel data as
the fractional volume of fluid (VOF), where V varies over the range of 0 ≤ V ≤ 1. The value
V is regarded as the volume of fluid in each voxel, which implies that a boundary exists inside
the voxel with a value of 0 < V < 1. We next decide the boundary of a given domain.
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Fig. 3 Transformation

First, suppose that rectangular domain Ω covering stenosed model Ω1 is given, and the
voxel data are defined with a grid spacing of h = ∆x and k = ∆y in the x and y directions for
Ω, respectively. Grid points are basically located at the center of each voxel or cell. The four
grid points of the cell denoted by PE , PW , PS and PN are adjacent to P ∈ Ω1, and their distances
from P are denoted by hE , hW , kS and kN (cf. Fig. 3). If V (Pi j) = 1 and V (Pi+1, j) �= 1, the
spatial coordinates of the point PE corresponding to one of the boundary points illustrated in
Fig. 3 are defined such that

(xE ,yE) = (ih+hE , jk),

where hE = (0.5+V (PE))h.



4. Numerical methods

The two-dimensional, non-steady, incompressible Navier-Stokes equations are written as

∂u
∂ t

St = Fu − ∂ p
∂x

,
∂v
∂ t

St = Fv − ∂ p
∂y

, (1)

D :=
∂u
∂x

+
∂v
∂y

= 0, (2)

where (u,v) are velocity components, p is the pressure, St is the Strouhal number, and Fu and
Fv are flux terms defined as
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∂u
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where Re is the Reynolds number. Note that the volume of fluid at each voxel should be
calculated in advance. Cell-vertex architecture for the velocity (u,v) and pressure p was em-
ployed, and the non-staggered finite difference method by Nishida [5] was utilized for spatial
discretization. However, since this method requires ideal points for calculating the differential
terms at the boundary, the neighboring point local collocation (NPLC) method by Nakano et
al. [6, 7] was introduced near the boundary. To solve Eqs. (1) and (2), we used the method
of line approach which decouples spatial discretization from temporal discretization. Further-
more, since the divergence-free condition is satisfied at each time step, the coupled form of
velocity and pressure was used. Details of algorithm are given next.

• Algorithm

Step 1. Time integration is discretized by using the Adams-Bashforth method with sec-
ondary accuracy for the flux terms, and the explicit Euler method is employed for
the other terms. The transient velocity (u∗,v∗) at time step n+1 can be expresssed
as
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where superscript n denotes the nth time step, ∆t is the time step, and i and j are
grid points in the x and y derections, respectively. We set F0

u i+1/2, j := F1
u i+1/2, j

and F0
v i, j+1/2 := F1

v i, j+1/2.

Step 2. To compute pressure pn+1, we can write
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and

Dn+1
i, j = 0. (7)

Substituing Eqs. (5) and (6) into Eq. (7), a pressure-based Poisson equation results
such that
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Step 3. We can calculate from Eqs. (5) and (6) the velocity at a time step. If |Dn+1
i, j | < ε∗,

where ε∗ is a small constant, this can be updated as

u∗
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2 , j
= un+1

i+ 1
2 , j

, v∗
i, j+ 1

2
= vn+1

i, j+ 1
2
, pn
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before returning to Step 2. Otherwise, go back to Step 1.

Note that the flux terms at the mid-point of each cell side need to be calculated in Step 1.
In order to calculate these terms, the non-staggered finite difference method of Nishida [5]
was used. The velocity at each cell center can be calculated by using the mean value of two
adjacent grid points as follows:
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2
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2
. (8)

Hence, we have
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for the discretization of flux term Fui+1/2, j. Similarly, we can also calculate the viscous term
of Fvi, j+1/2.

The differential terms at neighboring points (i + 1/2, j) and (i, j + 1/2) on the boundary
can be calculated by using the neighboring point local collocation (NPLC) method [6, 7] in
terms of the flux to avoid the use of ideal points. With the local collocation method, the two-
dimensional spatial derivatives at the boundary stencils are approximated as follows.
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Fig. 4 Spacial point relationship for NPLC



We first numbered the points as shown in Fig. 4 and assumed that the flow variable can be
approximated by

f (x,y) = f0 +a1x+a2y+a3x2 +a4y2 +a5xy, (10)

where f0 represents the value at the current point, ai (i = 1, . . . ,5) are unknown coefficients,
and (x,y) are the relative coordinates from the current point. Note that we can obtain the
following spatial derivatives at point 0 shown in Fig. 4:

∂ f
∂x

= a1 +2a3x+a5y,
∂ f
∂y

= a2 +2a4y+a5x,

∂ 2 f
∂x2 = 2a3,

∂ 2 f
∂y2 = 2a4

by differentiating Eq. (10) with respect to x or y. To get unknown coefficients ai (i = 1, . . . ,5),
the following matrices for l = 5, . . . ,8 are solved and averaged to ensure the spatial second-
order accuracy:
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 (l = 5, . . . ,8).

If a grid point in the diagonal direction (for example, point 6 in Fig. 4) is not in region Ω1, the
calculation of the matrix is skipped.

We use for the convection terms the third-order upwind scheme at the usual inner grids and
an alternative upwind scheme of first-order by the NPLC method at the boundary. Note that
we further introduce the following method to assess the convection terms at points (i+1/2, j)
and (i, j +1/2). For example, u ·∂u/∂x, one of the convection terms in Fu at point Pi+1/2, j is
calculated by the third-order upwind scheme such as
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if all referring to grid points are included in region Ω1. Otherwise, we calculate the terms by
using the first and second differentiable terms with the NPLC method as follows:

u
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where δxu and δxxu are the respective values for the first and second differentiation obtained
from NPLC. The convection terms in the y direction can be similarly obtained.



5. Boundary conditions

In the solutions to the Navier-Stokes equations with Dirichlet conditions, we usually need
the Neumann conditions for the pressure. However, it is very difficult to treat the boundary
conditions for an arbitrary region, except a square or a rectangle, in the Cartesian coordinate
system. We propose a new method that is based on Eq. (1) to solve this problem.

Let n =(nx,ny) be the unit outer normal vector. When the no-slip condition at the boundary
is imposed, it holds that

∂ p
∂n

=
∂ p
∂x

nx +
∂ p
∂y

ny = 0 (13)

for the pressure. Moreover, if nx �= 0 and ny �= 0, we can obtain

∂ p
∂x

=
1
2

{
Fu − ∂u

∂ t
St − ny

nx

(
Fv − ∂v

∂ t
St

)}
(14)

from Eqs. (1) and (13). Therefore, if PE is a boundary point on the right of point Pi j, we can
calculate p(PE) by using

∂ p
∂x

� p(PE)− p(Pi j)
hE

,

where p(PE) and p(Pi j) denote the pressures at points PE and Pi j, and hE denotes the distance
between PE and Pi j. In the case of nx = 1 and ny = 0, we can use

∂ p
∂x

= Fu − ∂u
∂ t

·St.

6. Numerical results

Computations were conducted for Re = 750 and St = 0.024 with a stenosed channel of ε = 0.5.
We set x1 = 0，x2 = 5.0，x3 = x4 = 7.5，x5 = 10.0 and x6 = 28.0. A grid system with a uniform
grid spacing of h = k = 0.05 was used for all the cases in this section. The time step was set to
∆t = 1.25×10−4, and the computations were carried out up to 8000 steps. At the solid wall
of the channel, we apply the following non-slip condition for the velocity components:

(u,v) = (0,0).

The inflow conditions are taken as

(u,v) = (U0,0).

For the outgoing flow conditions, we use

∂u
∂x

= 0,
∂v
∂x

= 0,
∂U0

∂ t
St = −∂ p

∂x
.

The initial condition is that the flow is at rest at t = 0. The poisson equation for the pressure
is solved by using the SOR method with acceleration parameter ω = 1. The wall shear stress
(WSS; τw) is defined as the dimensionless shear stress on the wall surface such that τw =
(∂u/∂y)wall/Re.



The WSS distributions on the lower walls are plotted in Figs. 5–6. Figures 7–8 show iso-
velocity and pressure contours for the non-sinusoidal cases. Figures 5–6 show that a higher
stress occurred immediately behind the stenosed portion when the pulsatile flow was just over
the peak in both cases. Moreover, as shown in Figs. 7–8, when the flow decelerated, the
wavy core flow behind the stenoses gradually developed strong vortices as detected by Liu et
al. Since the inflow velocity changed rapidly in the case of the non-sinusoidal waveform, the
vortices were stronger than in the case of sinusoidal waveform. Overall, we believe the vortex
wave flow is dominated not only by the stenoses geometry, but also by the waveform of the
inflow.

7. Application to a blood vessel with a moving boundary

This example is treated by the following blood vessel a model with a moving boundary (cf.
Ralph [11] and Liu et al. [12]). The upper wall is defined by the following function:

H(x, t) = 1−F(x)T (t)

where F(x) is the function defined in section 2 and T (t) = 0.5(1− cos2πt).
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Fig. 9 Computational stenosis models

Let U0 be Poiseuille flow. We put x1 = 0.0, x2 = 3.0, x3 = 5.5, x4 = 13.5, x5 = 16.0 and
x6 = 28.0. We use voxel data which are calculated for each time step. Although the algorithm
in section 4 is used, care must be taken when handling values (u∗,v∗) and pn at the points near
the boundary; that is, interpolation should be necessary.

As the boundary conditions, the non-slip condition (u,v) = (0,St ·∂H(x, t)/∂ t) is used for
the velocity components at the upper wall surface. The velocity gradient at outlet is fixed to
zero as ∂u/∂x = ∂v/∂x = 0. We use (u,v) = (U0,0) as the initial condition at t = 0.

The numerical results for the blood vessel model with the parameters Re = 300, St = 0.057
and ε = 0.4 which was treated by Liu et al. [12] are shown in Figs. 10–11. The mesh sizes and
time step length were h = k = 0.05 and ∆t = 0.0002, respectively. Computation was carried
out up to 5000 steps. As Figs. 10–11 indicate, it was possible to perform a blood flow analysis
for the blood vessel model with a moving boundary, even if the Cartesian coordinate system
was used.



8. Conclusions

The results of the present study demonstrate the feasibility of medical image-based computa-
tional fluid dynamic modeling of complex pulsatile, vortical blood flow directly in a Cartesian
coordinate system. This method shows great potential for definition of the boundary based on
voxel information, as well as for grid generation in the case of complex geometry. A quanti-
tative comparison with other reliable results confirms that our method can reasonably predict
not only a vortical flow pattern, but also a wall shear stress distribution. The application to
simulating the blood flow in a caritod artery based on MR images is currently underway, and
an extension to the three-dimensional case is also under consideration.
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(a) Present work (b) Liu et al. (2001)

Fig. 5 WSS at Re = 750 and St = 0.024 with ε = 0.5 in the sinusoidal case

(a) Present work (b) Liu et al. (2001)

Fig. 6 WSS at Re = 750 and St = 0.024 with ε = 0.5 in the non-sinusoidal case
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Fig. 7 Iso-velocity contours at Re = 750 and St = 0.024 with ε = 0.5
in the non-sinusoidal case
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Fig. 8 Pressure contours at Re = 750 and St = 0.024 with ε = 0.5
in the non-sinusoidal case
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Fig. 10 Iso-velocity contours at Re = 300 and St = 0.057 with ε = 0.4
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Fig. 11 Pressure contours at Re = 300 and St = 0.024 with ε = 0.4


