1-D numerical analysis of blood flow in multi-branched arteries

Tomoki KITAWAKI, Ryutaro HIMENO
Advanced Computing Center, RIKEN

Objective

Research plan

- Goal:

To make a 1-D computational model for whole body circulatory system

- methods : analysis of the pulse wave propagation
- Strategy
- establishment : 1-D model
- verification and validation :
many issues to be considered
comparison with 3-D model simulation
- comparison with experimental results
\square comparison with in vivo data
- combination : 1-D model and 3-D model

Influence of some issues

- Vessel structure
- curvature, taper, branch angle, outflow
- Unsteadiness of blood flow
- Behavior of the vessel wall
- visco-elasticity of the wall
- effect of longitudinal tethering
- Non-newtonian characteristics of the blood
- Boundary conditions
- inlet flow, peripheral conditions

1-D computational model

- Modeling
- variables P :Pressure
A sectional area
Q Flow Volume

- Governing equations
- continuity $: \frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0$
- momentum conservation $: \frac{\partial Q}{\partial t}+\frac{\partial}{\partial x}\left(\frac{Q^{2}}{A}\right)+\frac{A}{\rho} \frac{\partial p}{\partial x}+\frac{8 \pi \mu}{\rho} \frac{Q}{A}=0$
- deformation of the tube $\quad: p=p_{0} \exp \left(\frac{1}{K}\left(\frac{A}{A_{0}}-1\right)\right)$

Treatment at branching points

cross-sectional area ratio of the tubes $: \frac{\sum A_{\text {output }}}{A_{\text {input }}}$

Models

1:The diameter of the tube

- large tube : aorta
- medium tube : middle artery
- small tube : arteriole

2:The bifurcation angle $\mathbf{0}^{\circ} \sim 120^{\circ} \quad$ (with an interval of 30°)
3:The cross-sectional area ratio of the tubes $0.8 \sim 1.2 \quad$ (with an interval of 0.1)

Computational parameters

diameter	Large	Medium	Small
Cross-sectional area (tube diameter)	$\begin{gathered} \mathbf{5 . 0} \times \mathbf{1 0}^{-4} \mathbf{m} \\ (\fallingdotseq \mathbf{2 5 m m}) \end{gathered}$	$\begin{gathered} \hline 7.0 \times \mathbf{1 0}^{-6} \mathbf{m} \\ (\fallingdotseq \mathbf{3 m m}) \end{gathered}$	$\begin{aligned} & \mathbf{2 . 0 \times 1 0 ^ { - 7 }} \mathbf{m} \\ & (\fallingdotseq \mathbf{0 . 5 m m}) \end{aligned}$
Maximum flow volume (q_{0}) (peak flow velocity)	$\begin{gathered} 5.0 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\ (\fallingdotseq 100 \mathrm{~cm} / \mathrm{s}) \end{gathered}$	$\begin{gathered} 5.0 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s} \\ (\fallingdotseq 70 \mathrm{~cm} / \mathrm{s}) \end{gathered}$	$\begin{gathered} 3.0 \times 10^{-8} \mathrm{~m}^{3} / \mathrm{s} \\ (\fallingdotseq 15 \mathrm{~cm} / \mathrm{s}) \end{gathered}$
Reynolds number (Re)	$\fallingdotseq 8300$	$\fallingdotseq 700$	$\fallingdotseq 25$
The relation coefficient (K) (wave propagation velocity)	$\begin{gathered} 4.0 \\ (5.0 \mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{gathered} 10.0 \\ (\fallingdotseq 7.9 \mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{gathered} 25.0 \\ (12.5 \mathrm{~m} / \mathrm{s}) \end{gathered}$
Length of the tube $(\triangle \mathbf{x})$	$\begin{gathered} 1.0 \mathrm{~m} \\ (1.0 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 1.5 \mathrm{~m} \\ (2.0 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~m} \\ (5.0 \mathrm{~mm}) \end{gathered}$
Total elapsed time $(\triangle \mathbf{t})$	$\begin{gathered} 0.5 \mathrm{~s} \\ (0.1 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 0.5 \mathrm{~s} \\ (0.1 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 0.5 \mathrm{~s} \\ (0.2 \mathrm{~ms}) \end{gathered}$
Courant Number $(=c \triangle t / \triangle x)$	0.5	0.395	0.5

A computational model

- Model geometry

- Boundary conditions

Reflected wave at the branching point

Relationship between the reflected wave and the tube diameter

Dependence on bifurcation angle of the reflected wave

Relationship between the reflected wave and the tube cross-sectional ratio

Discussion and Conclusion

- 1-D computational model of the artery systems
- investigation the bifurcation angle dependence
- a quantitative analysis of the reflected wave
- The angle effect
- the reflected wave at bifurcation point was observed
- the angle dependence was recognized in large and medium arteries
- Combination of angle and cross-sectional ratio
- peculiar feature of reflected wave

Future works

- Establishment of the 1-D model
- vessel structure: curvature, taper, branch angle, outflow
- unsteadiness of blood flow
- behavior of the vessel wall
- non-newtonian characteristics of the blood
- boundary conditions
- Verification and validation
- comparison with 3-D model
- comparison with experimental results
- comparison with in vivo data

■ Model combination : 1-D model and 3-D model

Reflected wave at branch point

Total reflected wave at branch point

