骨梁リモデリングの 生体力学シミュレーション

**# 坪田 健一, ^{\$†} 安達 泰治 ^{\$†} 冨田 佳宏, # 牧野内 昭武

*東北大学大学院工学研究科 *理化学研究所情報環境室 #理化学研究所ものつくり情報技術統合化研究プログラム *神戸大学工学部

> 理研シンポジウム「生体力学シミュレーション」 2003.5.27-28,東京

Bone: Structure — Function

Galileo Galilei, 17C Bone size - specimen size (Ascenzi93)

個体の大きさ→ 体重,筋力,etc.→ 骨に加わる荷重→ 骨の大きさ(形態)

Bone: Structure and function (cont.)

Proximal femur (大腿骨近位部)

Vertebral body (椎体)

- Complicated three-dimensional structure (External shape, Internal structure)
- Functional adaptation to mech. env. (Roux 1881)
- Load bearing structure

Computational Biomechanics: Bone Remodeling

Purposes:

- To understand mechanism of adaptive bone remodeling
- To predict remodeling, around bone-implant interface
- To design implant, screw ...
- To apply in bone tissue engineering, design scaffold

Approaches:

- Phenomenological modeling and simulation "Macro"
- Down toward mechanism at cellular level "Micro"

Macroscopic Model: Cowin, Carter et al.

Adaptive elasticity (Cowin76)

$$\left|\frac{de}{dt}=a(e)+A(e)_{i}(\mathcal{E}_{i}-\mathcal{E}^{0}_{i})\right|$$

Self optimization model (Carter87)

$$\frac{d\rho}{dt} = c(\Psi_b - \Psi_{bas})$$

Trabecular adaptation by surface remodeling

- Trabecular microstructural changes by remodeling
- Local mechanical stimulus (Cowin 91)
- Structural adaptation at macrostructural level (Wolff 1869)
- Hierarchy from micro- up to macro- structure

Mathematical and Computational Modeling of Trabecular Surface Remodeling

Model of Trabecular Surface Remodeling

 Local stress nonuniformity
 Γ = ln(σ_c / σ_d)
 → Driving force of remodeling
 - Representative stress

 $\sigma_d = \int_S w(l)\sigma_r dS / \int_S w(l)dS$

- Surface movement toward uniform stress state

Rate of surface movement $\dot{M} = \dot{M}(\Gamma)$ $=\begin{cases} \Gamma > 0 \text{ (Formation)} \\ \Gamma < 0 \text{ (Resorption)} \end{cases}$

Digital image-based model of cancellous bone cube combined with large-scale finite element method

- Canine distal femur under compressive loading (Guldberg97)
- Repetitive calculation of FEM and Morphological changes

Trabecular structural changes under compressive loading

Pixel FE model of proximal femur

Trabecular surface remodeling for proximal femur

(1) One-legged stance: 6000/day

2317 N

703 N

(3) Adduction: 2000/day

* Boundary condition: Beaupré 1990

Mechanical environment at trabecular level

Image-based model of human proximal femur

- CT image data

(Research systems inc.)

- One million voxels250 mm/voxel
- Isotropic structure
- Volume fraction of cancellous bone: 0.51

Future works

Evaluation and Design of Bone-Implant with Trabecular Remodeling Simulation

Evaluation of trabecular structural change around spinal fixation screw

- Spinal reconstruction
 - for Neoplasm, Fracture, ...
- Fixation Screw
 - Infection
 - Fatigue fracture (Bone, Screw)
 - Loosening Order of month-year

Meyer & Cotler (1991)

Time-course change in bone structure by remodeling
(1) Change in mechanical environment of bone
(2) Adaptive bone remodeling
(3) Change in bone morphology

⇒ Important for proper fixation

Voxel model of a vertebral body with a fixation screw

* Isotropic elastic material: Bone ($E_b = 20$ GPa, $v_b = 0.3$), Screw($E_s = 200$ GPa, $v_s = 0.29$)

Trabecular structural changes near bone-screw interface: shear loading case

Shape design for artificial hip joint stem

Change in stem shape and equiv. stress

Loading case L1 : L2 : L3 = 3 : 1 : 1

Computational design system for bone implant

Summary

 Trabecular remodeling simulation with digital image-based model combined with large-scale finite element method

- Application to the simulation method to evaluation and design of bone-implant